Surrogate Model for Heat Transfer Prediction in Impinging Jet Arrays using Dynamic Inlet/Outlet and Flow Rate Control
- URL: http://arxiv.org/abs/2507.07034v1
- Date: Wed, 09 Jul 2025 17:03:54 GMT
- Title: Surrogate Model for Heat Transfer Prediction in Impinging Jet Arrays using Dynamic Inlet/Outlet and Flow Rate Control
- Authors: Mikael Vaillant, Victor Oliveira Ferreira, Wiebke Mainville, Jean-Michel Lamarre, Vincent Raymond, Moncef Chioua, Bruno Blais,
- Abstract summary: This study presents a surrogate model designed to predict the Nusselt number distribution in an enclosed impinging jet array.<n>We generate a CNN-based surrogate model that can predict the Nusselt distribution in real time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a surrogate model designed to predict the Nusselt number distribution in an enclosed impinging jet arrays, where each jet function independently and where jets can be transformed from inlets to outlets, leading to a vast number of possible flow arrangements. While computational fluid dynamics (CFD) simulations can model heat transfer with high fidelity, their cost prohibits real-time application such as model-based temperature control. To address this, we generate a CNN-based surrogate model that can predict the Nusselt distribution in real time. We train it with data from implicit large eddy computational fluid dynamics simulations (Re < 2,000). We train two distinct models, one for a five by one array of jets (83 simulations) and one for a three by three array of jets (100 simulations). We introduce a method to extrapolate predictions to higher Reynolds numbers (Re < 10,000) using a correlation-based scaling. The surrogate models achieve high accuracy, with a normalized mean average error below 2% on validation data for the five by one surrogate model and 0.6% for the three by three surrogate model. Experimental validation confirms the model's predictive capabilities. This work provides a foundation for model-based control strategies in advanced thermal management applications.
Related papers
- One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
We present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models.
SIM shows strong empirical performances for one-step generators.
By applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image generation.
arXiv Detail & Related papers (2024-10-22T08:17:20Z) - Towards Generalized Hydrological Forecasting using Transformer Models for 120-Hour Streamflow Prediction [0.34530027457862006]
This study explores the efficacy of a Transformer model for 120-hour streamflow prediction across 125 diverse locations in Iowa, US.
We benchmarked the Transformer model's performance against three deep learning models (LSTM, GRU, and Seq2Seq) and the Persistence approach.
The study reveals the Transformer model's superior performance, maintaining higher median NSE and KGE scores and exhibiting the lowest NRMSE values.
arXiv Detail & Related papers (2024-06-11T17:26:14Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Direct data-driven forecast of local turbulent heat flux in
Rayleigh-B\'{e}nard convection [0.0]
Two-dimensional turbulent Rayleigh-B'enard convection flow at Prandtl number $rm Pr=7$ and Rayleigh number $rm Ra=107$.
Two recurrent neural networks are applied for the temporal advancement of flow data in the reduced latent data space.
Convolutional autoencoder with 12 hidden layers is able to reduce the dimensionality of the turbulence data to about 0.2 % of their original size.
arXiv Detail & Related papers (2022-02-26T12:39:19Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.