Tuning the probability detection of OAM entangled photons in Helical Ince-Gauss modes
- URL: http://arxiv.org/abs/2507.07035v1
- Date: Wed, 09 Jul 2025 17:04:00 GMT
- Title: Tuning the probability detection of OAM entangled photons in Helical Ince-Gauss modes
- Authors: A. A. Aguilar-Cardoso, D. Rodriguez-Guillen, R. Ramirez-Alarcon,
- Abstract summary: We show how the probability detection of the photon-pair can be tuned with the ellipticity parameter of the modes.<n>It is possible to maximize the probability of each HIG symmetric Bell state separately, also by tuning the elipticity of the projected basis.<n>The observed properties are confirmed experimentally by implementing measurements of the HIG modal joint probability of the SPDC two-photon state and Bell-type inequality violation experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we provide a detailed theoretical and experimental analysis of the two-photon Orbital Angular Momentum (OAM) entangled state, generated by a type-I Spontaneous Parametric Down Conversion (SPDC) process, when decomposed in terms of the Helical Ince-Gauss (HIG) modes basis. By exploiting the unique characteristics of this modal basis we show how the probability detection of the photon-pair can be tuned with the ellipticity parameter of the modes. We also show that, on the HIG basis the SPDC state has the contribution of two different symmetric Bell states, and it is possible to maximize the probability of each HIG symmetric Bell state separately, also by tuning the elipticity of the projected basis. The observed properties are confirmed experimentally by implementing measurements of the HIG modal joint probability of the SPDC two-photon state and Bell-type inequality violation experiments.
Related papers
- Quantifying nonclassicality of vacuum-one-photon superpositions via
potentials for Bell nonlocality, quantum steering, and entanglement [0.0]
Entanglement potentials are popular measures of the nonclassicality of single-mode optical fields.
We generalize this concept to define the potentials for Bell nonlocality and quantum steering.
Although we focus on the analysis of VOPS states, single-mode potentials can also be applied to study the nonclassicality of qudits or continuous-variable systems.
arXiv Detail & Related papers (2023-09-22T15:28:37Z) - Asymptotically-deterministic robust preparation of maximally entangled
bosonic states [1.7188280334580195]
We introduce a theoretical scheme to prepare a pure Bell singlet state of two bosonic qubits, in a way that is robust under the action of arbitrary local noise.
We employ a polarization-insensitive, non-absorbing, parity check detector in an iterative process which achieves determinismally with the number of repetitions.
We conclude that the proposed protocol can be employed to prepare any pure state of two bosons which are maximally entangled in either the internal degree of freedom (Bell states) or the spatial mode (NOON states)
arXiv Detail & Related papers (2023-03-20T22:40:57Z) - Experimental observation of phase transitions of a deformed Dicke model
using a reconfigurable, bi-parametric electronic platform [0.0]
We study the infinite-size limit of the Dicke model of quantum optics with a parity-breaking deformation strength that couples the system to an external bosonic reservoir.
We present an experimental implementation of the classical version of the deformed Dicke model using a state-of-the-art bi-parametric electronic platform.
arXiv Detail & Related papers (2023-03-02T19:54:03Z) - Spectral Properties of Transverse Laguerre-Gauss Modes in Parametric Down-Conversion [0.0]
We study the spectral dependence of the transverse Laguerre-Gauss modes in parametric downconversion.
We show how the spectral and spatial coupling can be harnessed to tune the purity of the well-known orbital angular momentum entanglement.
This work has implications for efficient collection of entangled photons in a transverse single mode, quantum imaging, and engineering pure states for high-dimensional quantum information processing.
arXiv Detail & Related papers (2022-09-05T11:37:31Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - A classical model of spontaneous parametric down-conversion [0.0]
We analytically show that the pump-order correlations of the field generated from the DFG process replicate those of the signal field from SPDC.
We theoretically show that the model successfully captures second-order SU (1,1) interference induced coherence in both gain regimes.
Our model may not only lead to novel fundamental insights into the classical-quantum divide in the context of SPDC and induced coherence, but can also be a useful theoretical tool for numerous experiments and applications based on SPDC.
arXiv Detail & Related papers (2022-01-11T09:00:18Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.