CoPT: Unsupervised Domain Adaptive Segmentation using Domain-Agnostic Text Embeddings
- URL: http://arxiv.org/abs/2507.07125v1
- Date: Tue, 08 Jul 2025 18:39:28 GMT
- Title: CoPT: Unsupervised Domain Adaptive Segmentation using Domain-Agnostic Text Embeddings
- Authors: Cristina Mata, Kanchana Ranasinghe, Michael S. Ryoo,
- Abstract summary: Unsupervised domain adaptation (UDA) involves learning class semantics from labeled data within a source domain that generalize to an unseen target domain.<n>We present a novel Covariance-based Pixel-Text loss, CoPT, that uses domain-agnostic text embeddings to learn domain-invariant features in an image segmentation encoder.<n>In experiments on four benchmarks we show that a model trained using CoPT achieves the new state of the art performance on UDA for segmentation.
- Score: 35.88225773710471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) involves learning class semantics from labeled data within a source domain that generalize to an unseen target domain. UDA methods are particularly impactful for semantic segmentation, where annotations are more difficult to collect than in image classification. Despite recent advances in large-scale vision-language representation learning, UDA methods for segmentation have not taken advantage of the domain-agnostic properties of text. To address this, we present a novel Covariance-based Pixel-Text loss, CoPT, that uses domain-agnostic text embeddings to learn domain-invariant features in an image segmentation encoder. The text embeddings are generated through our LLM Domain Template process, where an LLM is used to generate source and target domain descriptions that are fed to a frozen CLIP model and combined. In experiments on four benchmarks we show that a model trained using CoPT achieves the new state of the art performance on UDA for segmentation. The code can be found at https://github.com/cfmata/CoPT.
Related papers
- How Useful is Continued Pre-Training for Generative Unsupervised Domain Adaptation? [23.454153602068786]
We evaluate the utility of Continued Pre-Training (CPT) for generative UDA.<n>Our findings suggest that a implicitly learns the downstream task while predicting masked words informative to that task.
arXiv Detail & Related papers (2024-01-31T00:15:34Z) - I2F: A Unified Image-to-Feature Approach for Domain Adaptive Semantic
Segmentation [55.633859439375044]
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work.
Key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly.
This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation.
arXiv Detail & Related papers (2023-01-03T15:19:48Z) - Prototypical Contrast Adaptation for Domain Adaptive Semantic
Segmentation [52.63046674453461]
Prototypical Contrast Adaptation (ProCA) is a contrastive learning method for unsupervised domain adaptive semantic segmentation.
ProCA incorporates inter-class information into class-wise prototypes, and adopts the class-centered distribution alignment for adaptation.
arXiv Detail & Related papers (2022-07-14T04:54:26Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised domain adaption (UDA) aims to adapt models learned from a well-annotated source domain to a target domain.
We introduce a novel prompt learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL)
arXiv Detail & Related papers (2022-02-14T13:25:46Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
We propose a new UDA semantic segmentation approach based on domain assumption closeness to alleviate the above problems.
Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels.
Experiments conducted on GTA5 and SYNTHIA proved the effectiveness of our method.
arXiv Detail & Related papers (2021-05-07T10:24:18Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation.
Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains.
We develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment.
arXiv Detail & Related papers (2020-09-26T10:28:11Z) - Domain Adaptive Semantic Segmentation Using Weak Labels [115.16029641181669]
We propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain.
We develop a weak-label classification module to enforce the network to attend to certain categories.
In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting.
arXiv Detail & Related papers (2020-07-30T01:33:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.