Aerial Maritime Vessel Detection and Identification
- URL: http://arxiv.org/abs/2507.07153v1
- Date: Wed, 09 Jul 2025 11:43:02 GMT
- Title: Aerial Maritime Vessel Detection and Identification
- Authors: Antonella Barisic Kulas, Frano Petric, Stjepan Bogdan,
- Abstract summary: We leverage the YOLOv8 object detection model to detect all vessels in the field of view.<n>When found, we localize the target using simple geometric principles.<n>We demonstrate the proposed method in real-world experiments during the MBZIRC2023 competition, integrated into a fully autonomous system.
- Score: 1.2289361708127877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous maritime surveillance and target vessel identification in environments where Global Navigation Satellite Systems (GNSS) are not available is critical for a number of applications such as search and rescue and threat detection. When the target vessel is only described by visual cues and its last known position is not available, unmanned aerial vehicles (UAVs) must rely solely on on-board vision to scan a large search area under strict computational constraints. To address this challenge, we leverage the YOLOv8 object detection model to detect all vessels in the field of view. We then apply feature matching and hue histogram distance analysis to determine whether any detected vessel corresponds to the target. When found, we localize the target using simple geometric principles. We demonstrate the proposed method in real-world experiments during the MBZIRC2023 competition, integrated into a fully autonomous system with GNSS-denied navigation. We also evaluate the impact of perspective on detection accuracy and localization precision and compare it with the oracle approach.
Related papers
- NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments [56.35569661650558]
We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation.<n>Rather than constructing a global map, NOVA formulates perception, estimation, and control entirely in the target's reference frame.<n>We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss.
arXiv Detail & Related papers (2025-06-23T14:28:30Z) - Ship Detection in Remote Sensing Imagery for Arbitrarily Oriented Object Detection [0.0]
This research paper presents an innovative ship detection system tailored for applications like maritime surveillance and ecological monitoring.<n>The study employs YOLOv8 and repurposed U-Net, two advanced deep learning models, to significantly enhance ship detection accuracy.
arXiv Detail & Related papers (2025-03-17T10:49:41Z) - Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft.
Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets.
This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision.
arXiv Detail & Related papers (2024-08-22T02:48:13Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
This paper presents an autonomous vision-based navigation framework for tracking target objects in extreme marine conditions.
The proposed framework has been thoroughly tested in simulation under extremely reduced visibility due to sandstorms and fog.
The results are compared with state-of-the-art de-hazing methods across the benchmarked MBZIRC simulation dataset.
arXiv Detail & Related papers (2023-08-08T14:25:13Z) - Safe Vessel Navigation Visually Aided by Autonomous Unmanned Aerial
Vehicles in Congested Harbors and Waterways [9.270928705464193]
This work is the first attempt to detect and estimate distances to unknown objects from long-range visual data captured with conventional RGB cameras and auxiliary absolute positioning systems (e.g. GPS)
The simulation results illustrate the accuracy and efficacy of the proposed method for visually aided navigation of vessels assisted by UAV.
arXiv Detail & Related papers (2021-08-09T08:15:17Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.