論文の概要: Natural Evolutionary Search meets Probabilistic Numerics
- arxiv url: http://arxiv.org/abs/2507.07288v1
- Date: Wed, 09 Jul 2025 21:15:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.207035
- Title: Natural Evolutionary Search meets Probabilistic Numerics
- Title(参考訳): 自然進化探索は確率的数値と出会う
- Authors: Pierre Osselin, Masaki Adachi, Xiaowen Dong, Michael A. Osborne,
- Abstract要約: 確率的自然進化戦略アルゴリズム(ProbNES)と呼ばれる新しいアルゴリズムのクラスを導入する。
我々は,ProbNESアルゴリズムが,非確率的手法とグローバルサンプル効率の手法を一貫して上回っていることを示す。
- 参考スコア(独自算出の注目度): 24.753011922443513
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zeroth-order local optimisation algorithms are essential for solving real-valued black-box optimisation problems. Among these, Natural Evolution Strategies (NES) represent a prominent class, particularly well-suited for scenarios where prior distributions are available. By optimising the objective function in the space of search distributions, NES algorithms naturally integrate prior knowledge during initialisation, making them effective in settings such as semi-supervised learning and user-prior belief frameworks. However, due to their reliance on random sampling and Monte Carlo estimates, NES algorithms can suffer from limited sample efficiency. In this paper, we introduce a novel class of algorithms, termed Probabilistic Natural Evolutionary Strategy Algorithms (ProbNES), which enhance the NES framework with Bayesian quadrature. We show that ProbNES algorithms consistently outperforms their non-probabilistic counterparts as well as global sample efficient methods such as Bayesian Optimisation (BO) or $\pi$BO across a wide range of tasks, including benchmark test functions, data-driven optimisation tasks, user-informed hyperparameter tuning tasks and locomotion tasks.
- Abstract(参考訳): ゼロ階局所最適化アルゴリズムは、実数値のブラックボックス最適化問題を解決するのに不可欠である。
このうち、Natural Evolution Strategies(NES)は、特に事前の分布が利用できるシナリオに適している。
検索分布の空間における目的関数を最適化することにより、NESアルゴリズムは初期化時の事前知識を自然に統合し、半教師付き学習やユーザ優先の信念フレームワークなどの設定に有効となる。
しかし、ランダムサンプリングとモンテカルロの推定に依存するため、NESアルゴリズムはサンプル効率の制限に悩まされる可能性がある。
本稿では,確率的自然進化戦略アルゴリズム (ProbNES) と呼ばれる新しいアルゴリズムのクラスを紹介する。
ProbNESのアルゴリズムは、ベンチマークテスト関数、データ駆動最適化タスク、ユーザインフォームドハイパーパラメータチューニングタスク、移動タスクなど、幅広いタスクにおいて、ベイズ最適化(BO)や$\pi$BOといったグローバルなサンプル効率のよい手法よりも一貫して優れていることを示す。
関連論文リスト
- Constrained Hybrid Metaheuristic Algorithm for Probabilistic Neural Networks Learning [0.3686808512438362]
本研究では、確率論的ニューラルネットワーク(PNN)のトレーニングを強化するためのハイブリッドメタヒューリスティックアルゴリズムの可能性について検討する。
勾配に基づくアプローチのような伝統的な学習手法は、しばしば高次元で不確実な環境を最適化するのに苦労する。
本稿では,複数の個体群に基づく最適化手法を組み合わせた制約付きハイブリッドメタヒューリスティック(cHM)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-26T19:49:16Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions [0.0]
信頼領域に基づくBOを拡張した LABCAT アルゴリズムを提案する。
このアルゴリズムは、最先端のBOや他のブラックボックス最適化アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-19T13:56:24Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
この研究は、分散ブラックボックス最適化への進化的アプローチに関するものである。
各作業者は、アルゴリズムによる問題の近似を個別に解くことができる。
問題のロバスト性を大幅に改善する2つの代替シミュレーション手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T11:18:41Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
パーティクルスワム最適化 (PSO) は、探索空間を囲む一組の候補解を、ランダム化されたステップ長を持つ最もよく知られたグローバルおよびローカルな解へ移動させる反復探索法である。
本アルゴリズムは探索的・搾取的行動に対して望ましい特性が得られることを示す。
論文 参考訳(メタデータ) (2021-02-08T13:02:57Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - BOP-Elites, a Bayesian Optimisation algorithm for Quality-Diversity
search [0.0]
本稿では,エリートアルゴリズム(BOP-Elites)のベイズ最適化を提案する。
機能領域のユーザ定義領域を‘ニッチ’として考えることで、ニッチ毎に最適なソリューションを見つけることが私たちのタスクになります。
得られたアルゴリズムは、特徴空間におけるニッチに属する探索空間の部分を特定し、ニッチごとに最適な解を見つけるのに非常に効果的である。
論文 参考訳(メタデータ) (2020-05-08T23:49:13Z) - Optimistic Exploration even with a Pessimistic Initialisation [57.41327865257504]
最適初期化は強化学習(RL)における効率的な探索のための効果的な戦略である
特に、正の報酬しか持たないシナリオでは、Q-値はその最低値で初期化される。
本稿では、ニューラルネットワークから楽観性の源を分離する、悲観的に初期化されたQ値に対する単純なカウントベースの拡張を提案する。
論文 参考訳(メタデータ) (2020-02-26T17:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。