Seg-Wild: Interactive Segmentation based on 3D Gaussian Splatting for Unconstrained Image Collections
- URL: http://arxiv.org/abs/2507.07395v1
- Date: Thu, 10 Jul 2025 03:26:17 GMT
- Title: Seg-Wild: Interactive Segmentation based on 3D Gaussian Splatting for Unconstrained Image Collections
- Authors: Yongtang Bao, Chengjie Tang, Yuze Wang, Haojie Li,
- Abstract summary: We propose Seg-Wild, an interactive segmentation method based on 3D Gaussian Splatting for unconstrained image collections.<n>We integrate multi-dimensional feature embeddings for each 3D Gaussian and calculate the feature similarity between the feature embeddings and the segmentation target.<n>We project the 3D Gaussians onto a 2D plane and calculate the ratio of 3D Gaussians that need to be cut using the SAM mask.
- Score: 16.91513979037418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing and segmenting scenes from unconstrained photo collections obtained from the Internet is a novel but challenging task. Unconstrained photo collections are easier to get than well-captured photo collections. These unconstrained images suffer from inconsistent lighting and transient occlusions, which makes segmentation challenging. Previous segmentation methods cannot address transient occlusions or accurately restore the scene's lighting conditions. Therefore, we propose Seg-Wild, an interactive segmentation method based on 3D Gaussian Splatting for unconstrained image collections, suitable for in-the-wild scenes. We integrate multi-dimensional feature embeddings for each 3D Gaussian and calculate the feature similarity between the feature embeddings and the segmentation target to achieve interactive segmentation in the 3D scene. Additionally, we introduce the Spiky 3D Gaussian Cutter (SGC) to smooth abnormal 3D Gaussians. We project the 3D Gaussians onto a 2D plane and calculate the ratio of 3D Gaussians that need to be cut using the SAM mask. We also designed a benchmark to evaluate segmentation quality in in-the-wild scenes. Experimental results demonstrate that compared to previous methods, Seg-Wild achieves better segmentation results and reconstruction quality. Our code will be available at https://github.com/Sugar0725/Seg-Wild.
Related papers
- Trace3D: Consistent Segmentation Lifting via Gaussian Instance Tracing [27.24794829116753]
We address the challenge of lifting 2D visual segmentation to 3D in Gaussian Splatting.<n>Existing methods often suffer from inconsistent 2D masks across viewpoints and produce noisy segmentation boundaries.<n>We introduce Gaussian Instance Tracing (GIT), which augments the standard Gaussian representation with an instance weight matrix across input views.
arXiv Detail & Related papers (2025-08-05T08:54:17Z) - OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies [112.80292725951921]
textbfOVGaussian is a generalizable textbfOpen-textbfVocabulary 3D semantic segmentation framework based on the 3D textbfGaussian representation.<n>We first construct a large-scale 3D scene dataset based on 3DGS, dubbed textbfSegGaussian, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images.<n>To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a
arXiv Detail & Related papers (2024-12-31T07:55:35Z) - GaussianCut: Interactive segmentation via graph cut for 3D Gaussian Splatting [7.392798832833857]
We introduce GaussianCut, a new method for interactive multiview segmentation of scenes represented as 3D Gaussians.
Our approach allows for selecting the objects to be segmented by interacting with a single view.
It accepts intuitive user input, such as point clicks, coarse scribbles, or text.
arXiv Detail & Related papers (2024-11-12T05:09:42Z) - Click-Gaussian: Interactive Segmentation to Any 3D Gaussians [2.8461293457421957]
We propose Click-Gaussian, which learns distinguishable feature fields of two-level granularity.
Our method runs in 10 ms per click, 15 to 130 times as fast as the previous methods.
arXiv Detail & Related papers (2024-07-16T14:49:27Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.<n>We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.<n>Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - Learning Segmented 3D Gaussians via Efficient Feature Unprojection for Zero-shot Neural Scene Segmentation [16.57158278095853]
Zero-shot neural scene segmentation serves as an effective way for scene understanding.
Existing models, especially the efficient 3D Gaussian-based methods, struggle to produce compact segmentation results.
Our work proposes the Feature Unprojection and Fusion module as the segmentation field.
We show that our model surpasses baselines on zero-shot semantic segmentation task, improving by 10% mIoU over the best baseline.
arXiv Detail & Related papers (2024-01-11T14:05:01Z) - SplatMesh: Interactive 3D Segmentation and Editing Using Mesh-Based Gaussian Splatting [86.50200613220674]
A key challenge in 3D-based interactive editing is the absence of an efficient representation that balances diverse modifications with high-quality view synthesis under a given memory constraint.<n>We introduce SplatMesh, a novel fine-grained interactive 3D segmentation and editing algorithm that integrates 3D Gaussian Splatting with a precomputed mesh.<n>By segmenting and editing the simplified mesh, we can effectively edit the Gaussian splats as well, which will lead to extensive experiments on real and synthetic datasets.
arXiv Detail & Related papers (2023-12-26T02:50:42Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
This paper addresses the challenge of 3D instance segmentation by simultaneously leveraging 3D geometric and multi-view image information.
We introduce a novel 3D-to-2D query framework to effectively exploit 2D segmentation models for 3D instance segmentation.
Our method achieves robust segmentation performance and can generalize across different types of scenes.
arXiv Detail & Related papers (2023-12-13T18:59:58Z) - Segment Any 3D Gaussians [85.93694310363325]
This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)<n>Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.<n>We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-01T17:15:24Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
We propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes.
Compared to the implicit NeRF representation, we show that the grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency.
arXiv Detail & Related papers (2023-12-01T17:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.