論文の概要: Towards High-Resolution 3D Anomaly Detection: A Scalable Dataset and Real-Time Framework for Subtle Industrial Defects
- arxiv url: http://arxiv.org/abs/2507.07435v1
- Date: Thu, 10 Jul 2025 05:19:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.280517
- Title: Towards High-Resolution 3D Anomaly Detection: A Scalable Dataset and Real-Time Framework for Subtle Industrial Defects
- Title(参考訳): 高分解能3次元異常検出に向けて:サブセット産業欠陥のためのスケーラブルなデータセットとリアルタイムフレームワーク
- Authors: Yuqi Cheng, Yihan Sun, Hui Zhang, Weiming Shen, Yunkang Cao,
- Abstract要約: MiniShiftは、最初の高解像度3D異常検出データセットである。
計算オーバーヘッドを最小限に抑えた複雑な幾何学的詳細を捉えるためのフレームワークであるSimple3Dを紹介する。
- 参考スコア(独自算出の注目度): 3.3913177957853935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In industrial point cloud analysis, detecting subtle anomalies demands high-resolution spatial data, yet prevailing benchmarks emphasize low-resolution inputs. To address this disparity, we propose a scalable pipeline for generating realistic and subtle 3D anomalies. Employing this pipeline, we developed MiniShift, the inaugural high-resolution 3D anomaly detection dataset, encompassing 2,577 point clouds, each with 500,000 points and anomalies occupying less than 1\% of the total. We further introduce Simple3D, an efficient framework integrating Multi-scale Neighborhood Descriptors (MSND) and Local Feature Spatial Aggregation (LFSA) to capture intricate geometric details with minimal computational overhead, achieving real-time inference exceeding 20 fps. Extensive evaluations on MiniShift and established benchmarks demonstrate that Simple3D surpasses state-of-the-art methods in both accuracy and speed, highlighting the pivotal role of high-resolution data and effective feature aggregation in advancing practical 3D anomaly detection.
- Abstract(参考訳): 産業点雲解析では、微妙な異常を検出するには高解像度の空間データが必要であるが、一般的なベンチマークでは低解像度の入力が強調されている。
この格差に対処するために,現実的で微妙な3次元異常を生成するスケーラブルなパイプラインを提案する。
このパイプラインを利用することで,2,577点の雲を含む最初の高分解能3次元異常検出データセットであるMiniShiftを開発した。
さらに,マルチスケール近傍記述子(MSND)とローカル特徴空間アグリゲーション(LFSA)を統合した効率的なフレームワークSimple3Dを導入し,計算オーバーヘッドを最小化し,20fpsを超えるリアルタイム推論を実現する。
MiniShiftと確立されたベンチマークの大規模な評価は、Simple3Dが最先端の手法を精度と速度の両方で超越し、実用的な3D異常検出の進歩における高解像度データと効果的な特徴集約の重要性を強調していることを示している。
関連論文リスト
- What Matters in Range View 3D Object Detection [15.147558647138629]
ライダーベースの知覚パイプラインは複雑なシーンを解釈するために3Dオブジェクト検出モデルに依存している。
過去のレンジビュー文献に提案されている複数の手法を使わずに、レンジビュー3次元オブジェクト検出モデル間の最先端を実現する。
論文 参考訳(メタデータ) (2024-07-23T18:42:37Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
本稿では,3次元物体検出のための新しいトレーニング後の重み付け手法を提案する。
事前訓練されたモデルにおける冗長パラメータを決定し、局所性と信頼性の両方において最小限の歪みをもたらす。
本フレームワークは,ネットワーク出力の歪みを最小限に抑え,検出精度を最大に維持することを目的とする。
論文 参考訳(メタデータ) (2024-07-02T09:33:32Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection [59.765645791588454]
最近導入されたRTS3Dは、深度監督のないオブジェクトの中間表現のための効率的な4次元特徴整合埋め込み空間を構築している。
本研究では, 内部領域で高密度サンプリングを行い, 内部領域でスパースサンプリングを行う非一様サンプリング方式を提案する。
提案手法は,ネットワークパラメータをほとんど含まないAP3dに対して2.57%の改善を実現している。
論文 参考訳(メタデータ) (2021-06-18T09:14:55Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3Dオブジェクト検出は、ロボット工学や拡張現実など多くの有望な分野に適用可能であるため、広く研究されている。
しかし、3Dデータのまばらな性質は、このタスクに固有の課題をもたらしている。
本稿では,完全畳み込み単一ショットスパース検出ネットワークであるGenerative Sparse Detection Network (GSDN)を提案する。
論文 参考訳(メタデータ) (2020-06-22T15:54:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。