Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
- URL: http://arxiv.org/abs/2507.07469v2
- Date: Fri, 11 Jul 2025 06:27:42 GMT
- Title: Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
- Authors: Haojie Liu, Zihan Lin,
- Abstract summary: Galerkin-ARIMA is a time-series forecasting framework that integrates Galerkin projection techniques with the classical ARIMA model.<n>We show that Galerkin-ARIMA matches or closely approximates ARIMA's forecasting accuracy while achieving orders-of-magnitude speedups in rolling forecasting tasks.
- Score: 9.953821298617473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Galerkin-ARIMA, a novel time-series forecasting framework that integrates Galerkin projection techniques with the classical ARIMA model to capture potentially nonlinear dependencies in lagged observations. By replacing the fixed linear autoregressive component with a spline-based basis expansion, Galerkin-ARIMA flexibly approximates the underlying relationship among past values via ordinary least squares, while retaining the moving-average structure and Gaussian innovation assumptions of ARIMA. We derive closed-form solutions for both the AR and MA components using two-stage Galerkin projections, establish conditions for asymptotic unbiasedness and consistency, and analyze the bias-variance trade-off under basis-size growth. Complexity analysis reveals that, for moderate basis dimensions, our approach can substantially reduce computational cost compared to maximum-likelihood ARIMA estimation. Through extensive simulations on four synthetic processes-including noisy ARMA, seasonal, trend-AR, and nonlinear recursion series-we demonstrate that Galerkin-ARIMA matches or closely approximates ARIMA's forecasting accuracy while achieving orders-of-magnitude speedups in rolling forecasting tasks. These results suggest that Galerkin-ARIMA offers a powerful, efficient alternative for modeling complex time series dynamics in high-volume or real-time applications.
Related papers
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - A Novel Method to Manage Production on Industry 4.0: Forecasting Overall Equipment Efficiency by Time Series with Topological Features [0.0]
Overall equipment efficiency (OEE) is a key manufacturing production, but its volatile nature complicates short-term forecasting.<n>This study presents a novel framework combining time series decomposition and topological data analysis to improve OEE prediction across various equipment.
arXiv Detail & Related papers (2025-06-20T10:04:49Z) - FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities [76.46448367752944]
multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
arXiv Detail & Related papers (2025-05-26T15:46:53Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Enhancing Time Series Forecasting via a Parallel Hybridization of ARIMA and Polynomial Classifiers [1.9799527196428246]
We propose a hybrid forecasting approach that integrates the ARIMA model with a classifier to leverage the complementary strengths of both models.<n>The proposed hybrid model consistently outperforms the individual models in terms of prediction accuracy, al-beit with a modest increase in execution time.
arXiv Detail & Related papers (2025-05-11T06:53:19Z) - A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance [3.4354636842203026]
We propose PGDA-RL, a primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs)<n>PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem.<n>We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP.
arXiv Detail & Related papers (2025-05-07T15:18:43Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Probabilistic Traffic Forecasting with Dynamic Regression [15.31488551912888]
This paper proposes a dynamic regression (DR) framework that enhances existing deeptemporal models by incorporating for learning the error process in traffic forecasting.<n>The framework relaxes the assumption of time independence by modeling the error series of the base model using a matrix- structured autoregressive (AR) model.<n>The newly designed loss function is based on the likelihood of a non-isotropic error term, enabling the model to generate probabilistic forecasts while preserving the original outputs of the base model.
arXiv Detail & Related papers (2023-01-17T01:12:44Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Spike-and-Slab Generalized Additive Models and Scalable Algorithms for
High-Dimensional Data [0.0]
We propose hierarchical generalized additive models (GAMs) to accommodate high-dimensional data.
We consider the smoothing penalty for proper shrinkage of curve and separation of smoothing function linear and nonlinear spaces.
Two and deterministic algorithms, EM-Coordinate Descent and EM-Iterative Weighted Least Squares, are developed for different utilities.
arXiv Detail & Related papers (2021-10-27T14:11:13Z) - Time Series Forecasting Using Manifold Learning [6.316185724124034]
We address a three-tier numerical framework based on manifold learning for the forecasting of high-dimensional time series.
At the first step, we embed the time series into a reduced low-dimensional space using a nonlinear manifold learning algorithm.
At the second step, we construct reduced-order regression models on the manifold to forecast the embedded dynamics.
At the final step, we lift the embedded time series back to the original high-dimensional space.
arXiv Detail & Related papers (2021-10-07T17:09:59Z) - Hierarchical Gaussian Process Models for Regression Discontinuity/Kink
under Sharp and Fuzzy Designs [0.0]
We propose nonparametric Bayesian estimators for causal inference exploiting Regression Discontinuity/Kink (RD/RK)
These estimators are extended to hierarchical GP models with an intermediate Bayesian neural network layer.
Monte Carlo simulations show that our estimators perform similarly and often better than competing estimators in terms of precision, coverage and interval length.
arXiv Detail & Related papers (2021-10-03T04:23:56Z) - Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression [17.158289775348063]
Kernelized tensor Regression (BKTR) can be considered a new and scalable approach to modeling processes with low-rank cotemporal structure.
We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and inference.
arXiv Detail & Related papers (2021-08-31T19:22:23Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.