MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D Segmentation
- URL: http://arxiv.org/abs/2507.07519v1
- Date: Thu, 10 Jul 2025 08:07:59 GMT
- Title: MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D Segmentation
- Authors: Bangning Wei, Joshua Maraval, Meriem Outtas, Kidiyo Kpalma, Nicolas Ramin, Lu Zhang,
- Abstract summary: MUVOD is a new multi-view video dataset for training and evaluating object segmentation in reconstructed real-world scenarios.<n>Each scene contains a minimum of 9 views and a maximum of 46 views.<n>We provide 7830 RGB images with their corresponding segmentation mask in 4D motion, meaning that any object of interest in the scene could be tracked across temporal frames of a given view or across different views belonging to the same camera rig.
- Score: 3.229267555477331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3D GS) have steadily gained popularity in the field of 3D object segmentation in static scenes. These approaches demonstrate efficacy in a range of 3D scene understanding and editing tasks. Nevertheless, the 4D object segmentation of dynamic scenes remains an underexplored field due to the absence of a sufficiently extensive and accurately labelled multi-view video dataset. In this paper, we present MUVOD, a new multi-view video dataset for training and evaluating object segmentation in reconstructed real-world scenarios. The 17 selected scenes, describing various indoor or outdoor activities, are collected from different sources of datasets originating from various types of camera rigs. Each scene contains a minimum of 9 views and a maximum of 46 views. We provide 7830 RGB images (30 frames per video) with their corresponding segmentation mask in 4D motion, meaning that any object of interest in the scene could be tracked across temporal frames of a given view or across different views belonging to the same camera rig. This dataset, which contains 459 instances of 73 categories, is intended as a basic benchmark for the evaluation of multi-view video segmentation methods. We also present an evaluation metric and a baseline segmentation approach to encourage and evaluate progress in this evolving field. Additionally, we propose a new benchmark for 3D object segmentation task with a subset of annotated multi-view images selected from our MUVOD dataset. This subset contains 50 objects of different conditions in different scenarios, providing a more comprehensive analysis of state-of-the-art 3D object segmentation methods. Our proposed MUVOD dataset is available at https://volumetric-repository.labs.b-com.com/#/muvod.
Related papers
- Multi-Granularity Video Object Segmentation [36.06127939037613]
We propose a large-scale, densely annotated multi-granularity video object segmentation (MUG-VOS) dataset.<n>We automatically collected a training set that assists in tracking both salient and non-salient objects, and we also curated a human-annotated test set for reliable evaluation.<n>In addition, we present memory-based mask propagation model (MMPM), trained and evaluated on MUG-VOS dataset.
arXiv Detail & Related papers (2024-12-02T13:17:41Z) - 3D-Aware Instance Segmentation and Tracking in Egocentric Videos [107.10661490652822]
Egocentric videos present unique challenges for 3D scene understanding.
This paper introduces a novel approach to instance segmentation and tracking in first-person video.
By incorporating spatial and temporal cues, we achieve superior performance compared to state-of-the-art 2D approaches.
arXiv Detail & Related papers (2024-08-19T10:08:25Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - A One Stop 3D Target Reconstruction and multilevel Segmentation Method [0.0]
We propose an open-source one stop 3D target reconstruction and multilevel segmentation framework (OSTRA)
OSTRA performs segmentation on 2D images, tracks multiple instances with segmentation labels in the image sequence, and then reconstructs labelled 3D objects or multiple parts with Multi-View Stereo (MVS) or RGBD-based 3D reconstruction methods.
Our method opens up a new avenue for reconstructing 3D targets embedded with rich multi-scale segmentation information in complex scenes.
arXiv Detail & Related papers (2023-08-14T07:12:31Z) - DiVa-360: The Dynamic Visual Dataset for Immersive Neural Fields [3.94718692655789]
DiVa-360 is a real-world 360 dynamic visual dataset that contains synchronized high-resolution and long-duration multi-view video sequences.
We benchmark the state-of-the-art dynamic neural field methods on DiVa-360 and provide insights about existing methods and future challenges on long-duration neural field capture.
arXiv Detail & Related papers (2023-07-31T17:59:48Z) - MOSE: A New Dataset for Video Object Segmentation in Complex Scenes [106.64327718262764]
Video object segmentation (VOS) aims at segmenting a particular object throughout the entire video clip sequence.
The state-of-the-art VOS methods have achieved excellent performance (e.g., 90+% J&F) on existing datasets.
We collect a new VOS dataset called coMplex video Object SEgmentation (MOSE) to study the tracking and segmenting objects in complex environments.
arXiv Detail & Related papers (2023-02-03T17:20:03Z) - Neural Volumetric Object Selection [126.04480613166194]
We introduce an approach for selecting objects in neural volumetric 3D representations, such as multi-plane images (MPI) and neural radiance fields (NeRF)
Our approach takes a set of foreground and background 2D user scribbles in one view and automatically estimates a 3D segmentation of the desired object, which can be rendered into novel views.
arXiv Detail & Related papers (2022-05-30T08:55:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.