From Requirements to Code: Understanding Developer Practices in LLM-Assisted Software Engineering
- URL: http://arxiv.org/abs/2507.07548v1
- Date: Thu, 10 Jul 2025 08:42:19 GMT
- Title: From Requirements to Code: Understanding Developer Practices in LLM-Assisted Software Engineering
- Authors: Jonathan Ullrich, Matthias Koch, Andreas Vogelsang,
- Abstract summary: We propose a theory that explains the processes developers employ and the artifacts they rely on.<n>Our study highlights that fundamental RE work is still necessary when LLMs are used to generate code.
- Score: 2.2217676348694213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of generative LLMs and their advanced code generation capabilities, some people already envision the end of traditional software engineering, as LLMs may be able to produce high-quality code based solely on the requirements a domain expert feeds into the system. The feasibility of this vision can be assessed by understanding how developers currently incorporate requirements when using LLMs for code generation-a topic that remains largely unexplored. We interviewed 18 practitioners from 14 companies to understand how they (re)use information from requirements and other design artifacts to feed LLMs when generating code. Based on our findings, we propose a theory that explains the processes developers employ and the artifacts they rely on. Our theory suggests that requirements, as typically documented, are too abstract for direct input into LLMs. Instead, they must first be manually decomposed into programming tasks, which are then enriched with design decisions and architectural constraints before being used in prompts. Our study highlights that fundamental RE work is still necessary when LLMs are used to generate code. Our theory is important for contextualizing scientific approaches to automating requirements-centric SE tasks.
Related papers
- LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning.<n> Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs.<n>We propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF)
arXiv Detail & Related papers (2025-04-04T03:03:47Z) - LLMs' Reshaping of People, Processes, Products, and Society in Software Development: A Comprehensive Exploration with Early Adopters [3.4069804433026314]
Large language models (LLMs) like OpenAI ChatGPT, Google Gemini, and GitHub Copilot are rapidly gaining traction in the software industry.<n>Our study provides a nuanced understanding of how LLMs are shaping the landscape of software development.
arXiv Detail & Related papers (2025-03-06T22:27:05Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [76.59316249991657]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.<n>While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.<n>We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - LLMs: A Game-Changer for Software Engineers? [0.0]
Large Language Models (LLMs) like GPT-3 and GPT-4 have emerged as groundbreaking innovations with capabilities that extend far beyond traditional AI applications.
Their potential to revolutionize software development has captivated the software engineering (SE) community.
This paper argues that LLMs are not just reshaping how software is developed but are redefining the role of developers.
arXiv Detail & Related papers (2024-11-01T17:14:37Z) - From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future [15.568939568441317]
We investigate the current practice and solutions for large language models (LLMs) and LLM-based agents for software engineering.<n>In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance.<n>We discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering.
arXiv Detail & Related papers (2024-08-05T14:01:15Z) - Requirements are All You Need: From Requirements to Code with LLMs [0.0]
Large language models (LLMs) can be applied to software engineering tasks.
This paper introduces a tailored LLM for automating the generation of code snippets from well-structured requirements documents.
We demonstrate the LLM's proficiency in comprehending intricate user requirements and producing robust design and code solutions.
arXiv Detail & Related papers (2024-06-14T14:57:35Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes [54.13559879916708]
EVAPORATE is a prototype system powered by large language models (LLMs)<n>Code synthesis is cheap, but far less accurate than directly processing each document with the LLM.<n>We propose an extended code implementation, EVAPORATE-CODE+, which achieves better quality than direct extraction.
arXiv Detail & Related papers (2023-04-19T06:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.