論文の概要: Sparse Causal Discovery with Generative Intervention for Unsupervised Graph Domain Adaptation
- arxiv url: http://arxiv.org/abs/2507.07621v1
- Date: Thu, 10 Jul 2025 10:42:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.361274
- Title: Sparse Causal Discovery with Generative Intervention for Unsupervised Graph Domain Adaptation
- Title(参考訳): 教師なしグラフ領域適応のための生成的介入によるスパース因果発見
- Authors: Junyu Luo, Yuhao Tang, Yiwei Fu, Xiao Luo, Zhizhuo Kou, Zhiping Xiao, Wei Ju, Wentao Zhang, Ming Zhang,
- Abstract要約: Unsupervised Graph Domain Adaptation (UGDA)は、ラベル付きソースドメイングラフを利用して、分散シフトにもかかわらずラベルなしのターゲットドメインで効果的なパフォーマンスを実現する。
スパース因果モデリングと動的介入機構によりグラフ表現の安定化を実現する新しい手法であるSLOGANを提案する。
- 参考スコア(独自算出の注目度): 27.5393760658806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised Graph Domain Adaptation (UGDA) leverages labeled source domain graphs to achieve effective performance in unlabeled target domains despite distribution shifts. However, existing methods often yield suboptimal results due to the entanglement of causal-spurious features and the failure of global alignment strategies. We propose SLOGAN (Sparse Causal Discovery with Generative Intervention), a novel approach that achieves stable graph representation transfer through sparse causal modeling and dynamic intervention mechanisms. Specifically, SLOGAN first constructs a sparse causal graph structure, leveraging mutual information bottleneck constraints to disentangle sparse, stable causal features while compressing domain-dependent spurious correlations through variational inference. To address residual spurious correlations, we innovatively design a generative intervention mechanism that breaks local spurious couplings through cross-domain feature recombination while maintaining causal feature semantic consistency via covariance constraints. Furthermore, to mitigate error accumulation in target domain pseudo-labels, we introduce a category-adaptive dynamic calibration strategy, ensuring stable discriminative learning. Extensive experiments on multiple real-world datasets demonstrate that SLOGAN significantly outperforms existing baselines.
- Abstract(参考訳): Unsupervised Graph Domain Adaptation (UGDA)は、ラベル付きソースドメイングラフを利用して、分散シフトにもかかわらずラベルなしのターゲットドメインで効果的なパフォーマンスを実現する。
しかし,既存の手法では,因果的特徴の絡み合いや大域的アライメント戦略の失敗などにより,最適以下の結果が得られることが多い。
SLOGAN (Sparse Causal Discovery with Generative Intervention) は、スパース因果モデリングと動的介入機構によって安定したグラフ表現転送を実現する新しい手法である。
具体的には、SLOGANは、まずスパース因果グラフ構造を構築し、相互情報のボトルネック制約を利用して、ばらつき推論を通じてドメイン依存のスプリアス相関を圧縮しながら、スパース、安定因果特徴を分解する。
残余の突発的相関に対処するため,共分散制約による因果的特徴的一貫性を維持しつつ,ドメイン間特徴再結合による局所的突発的結合を断ち切る生成的介入機構を革新的に設計する。
さらに,対象ドメインの擬似ラベルにおける誤りの蓄積を軽減するため,カテゴリー適応型動的校正戦略を導入し,安定した識別学習を実現する。
複数の実世界のデータセットに対する大規模な実験は、SLOGANが既存のベースラインを大幅に上回っていることを示している。
関連論文リスト
- Partial Transportability for Domain Generalization [56.37032680901525]
本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T22:06:37Z) - Unsupervised Structural-Counterfactual Generation under Domain Shift [0.0]
本稿では,ソース領域からの事実観測に基づいて,対象領域における対実サンプルの生成という,新たな生成モデル課題を提案する。
本フレームワークは, 対象領域からの影響-内在変数の後方分布と, 対象領域からの領域-内在変数の事前分布とを組み合わせて, 所望の反事実を合成する。
論文 参考訳(メタデータ) (2025-02-17T16:48:16Z) - DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
グラフニューラルネットワーク(GNN)は、分散シフトの影響を受けやすいため、クリティカルドメインの脆弱性やセキュリティ上の問題が発生する。
不変(機能、構造)-ラベルマッピングの学習を目標とする既存の方法は、データ生成プロセスに関する過度に単純化された仮定に依存することが多い。
構造因果モデル(SCM)を用いたより現実的なグラフデータ生成モデルを提案する。
本稿では,非バイアスな特徴ラベルと構造ラベルのマッピングを独立に学習する,カジュアルなデカップリングフレームワークDeCafを提案する。
論文 参考訳(メタデータ) (2024-10-27T00:22:18Z) - Causally-Aware Unsupervised Feature Selection Learning [15.20376149047008]
非教師なし特徴選択(UFS)は、最近、ラベルなし高次元データの処理に有効であるとして注目されている。
従来のグラフベースの手法では、類似性グラフの構築において、非因果的特徴と因果的特徴の異なる影響を考慮できない。
Causally-Aware UnSupErvised Feature Selection Learning (CAUSE-FS)と呼ばれる新しいUFS法を提案する。
論文 参考訳(メタデータ) (2024-10-16T04:41:38Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
非教師なしドメイン適応(UDA)は、オブジェクト検出モデルのドメイン間ロバスト性を改善するために前例のない成功を収めた。
既存のUDA手法は、モデル学習中の瞬間的なデータ分布を無視しており、大きなドメインシフトによって特徴表現が劣化する可能性がある。
本稿では、特徴表現の整合とドメイン間のオブジェクト検出モデルの転送を目標とする自己ガイド適応モデルを提案する。
論文 参考訳(メタデータ) (2020-03-19T13:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。