Adaptive Gaussian Mixture Models-based Anomaly Detection for under-constrained Cable-Driven Parallel Robots
- URL: http://arxiv.org/abs/2507.07714v2
- Date: Tue, 22 Jul 2025 13:39:28 GMT
- Title: Adaptive Gaussian Mixture Models-based Anomaly Detection for under-constrained Cable-Driven Parallel Robots
- Authors: Julio Garrido, Javier Vales, Diego Silva-Muñiz, Enrique Riveiro, Pablo López-Matencio, Josué Rivera-Andrade,
- Abstract summary: This paper investigates whether anomalies can be detected using only motor torque data, without additional sensors.<n>It introduces an adaptive, unsupervised outlier detection algorithm based on Gaussian Mixture Models (GMMs)<n>The proposed method achieves a 100% true positive rate and 95.4% average true negative rate, with 1-second detection latency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cable-Driven Parallel Robots (CDPRs) are increasingly used for load manipulation tasks involving predefined toolpaths with intermediate stops. At each stop, where the platform maintains a fixed pose and the motors keep the cables under tension, the system must evaluate whether it is safe to proceed by detecting anomalies that could compromise performance (e.g., wind gusts or cable impacts). This paper investigates whether anomalies can be detected using only motor torque data, without additional sensors. It introduces an adaptive, unsupervised outlier detection algorithm based on Gaussian Mixture Models (GMMs) to identify anomalies from torque signals. The method starts with a brief calibration period, just a few seconds, during which a GMM is fit on known anomaly-free data. Real-time torque measurements are then evaluated using Mahalanobis distance from the GMM, with statistically derived thresholds triggering anomaly flags. Model parameters are periodically updated using the latest segments identified as anomaly-free to adapt to changing conditions. Validation includes 14 long-duration test sessions simulating varied wind intensities. The proposed method achieves a 100% true positive rate and 95.4% average true negative rate, with 1-second detection latency. Comparative evaluation against power threshold and non-adaptive GMM methods indicates higher robustness to drift and environmental variation.
Related papers
- Cybersecurity-Focused Anomaly Detection in Connected Autonomous Vehicles Using Machine Learning [4.800738030285873]
Anomaly detection in connected autonomous vehicles (CAVs) is crucial for maintaining safe and reliable transportation networks.<n>This study explores an anomaly detection approach by simulating vehicle behavior, generating a dataset that represents typical and atypical vehicular interactions.<n>We utilize machine learning models to effectively identify abnormal driving patterns.
arXiv Detail & Related papers (2025-06-28T19:11:19Z) - Steam Turbine Anomaly Detection: An Unsupervised Learning Approach Using Enhanced Long Short-Term Memory Variational Autoencoder [3.004788114489393]
We propose an Enhanced Long Short-Term Memory Variational Autoencoder (ELSTMVAE-DAF-GMM) for precise unsupervised anomaly detection in unlabeled datasets.
ELSTMVAE, integrating LSTM with VAE, was used to project high-dimensional time-series data to a low-dimensional phase space.
The novel deep advanced features (DAF) hybridize latent embeddings and reconstruction discrepancies from the LSTMVAE model and provide a more comprehensive data representation.
arXiv Detail & Related papers (2024-11-16T10:11:36Z) - Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization [42.14439854721613]
Jamming devices disrupt signals from the global navigation satellite system (GNSS)<n>This paper introduces an extensive dataset comprising snapshots obtained from a low-frequency antenna.<n>Our objective is to assess the resilience of machine learning (ML) models against environmental changes.
arXiv Detail & Related papers (2024-09-23T15:20:33Z) - Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly [4.387337528923525]
Anomaly detection deals with detecting deviations from established patterns within data.
We propose a novel framework for online-adaptive anomaly detection using transfer learning.
Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.
arXiv Detail & Related papers (2024-06-18T15:11:44Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
The paper discusses the improvement of the accuracy of an inertial navigation system created on the basis of MEMS sensors using machine learning (ML) methods.
The proposed algorithm based on MO has demonstrated its ability to correctly classify in the presence of noise typical for MEMS sensors.
arXiv Detail & Related papers (2022-12-07T10:01:11Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism.
With "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training.
arXiv Detail & Related papers (2022-06-08T19:39:51Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
We develop a fundamentally new and general framework for sequential change detection.
Our procedures come with clean, nonasymptotic bounds on the average run length.
We show how to design their mixtures in order to achieve both statistical and computational efficiency.
arXiv Detail & Related papers (2022-03-07T17:25:02Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
We propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges.
We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states.
Experiments show that MIDAS-F has significantly higher accuracy than MIDAS.
arXiv Detail & Related papers (2020-09-17T17:59:27Z) - TLIO: Tight Learned Inertial Odometry [43.17991168599939]
We propose a tightly-coupled Extended Kalman Filter framework for IMU-only state estimation.
We show that our network, trained with pedestrian data from a headset, can produce statistically consistent measurement and uncertainty.
arXiv Detail & Related papers (2020-07-06T03:13:34Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.