Optimization Guarantees for Square-Root Natural-Gradient Variational Inference
- URL: http://arxiv.org/abs/2507.07853v1
- Date: Thu, 10 Jul 2025 15:33:28 GMT
- Title: Optimization Guarantees for Square-Root Natural-Gradient Variational Inference
- Authors: Navish Kumar, Thomas Möllenhoff, Mohammad Emtiyaz Khan, Aurelien Lucchi,
- Abstract summary: This paper establishes convergence guarantees for variational-Gaussian inference and its continuous-time gradient flow.<n>Experiments demonstrate the effectiveness of natural gradient methods and highlight their advantages over algorithms that use Euclidean or Wasserstein geometries.
- Score: 16.89312441692349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational inference with natural-gradient descent often shows fast convergence in practice, but its theoretical convergence guarantees have been challenging to establish. This is true even for the simplest cases that involve concave log-likelihoods and use a Gaussian approximation. We show that the challenge can be circumvented for such cases using a square-root parameterization for the Gaussian covariance. This approach establishes novel convergence guarantees for natural-gradient variational-Gaussian inference and its continuous-time gradient flow. Our experiments demonstrate the effectiveness of natural gradient methods and highlight their advantages over algorithms that use Euclidean or Wasserstein geometries.
Related papers
- Revisiting Convergence: Shuffling Complexity Beyond Lipschitz Smoothness [50.78508362183774]
Shuffling-type gradient methods are favored in practice for their simplicity and rapid empirical performance.<n>Most require the Lipschitz condition, which is often not met in common machine learning schemes.
arXiv Detail & Related papers (2025-07-11T15:36:48Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Provable convergence guarantees for black-box variational inference [19.421222110188605]
Black-box variational inference is widely used in situations where there is no proof that its optimization succeeds.
We provide rigorous guarantees that methods similar to those used in practice converge on realistic inference problems.
arXiv Detail & Related papers (2023-06-04T11:31:41Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
We show that Adam converges to $epsilon$-stationary points with $O(epsilon-4)$ gradient complexity under far more realistic conditions.
We also propose a variance-reduced version of Adam with an accelerated gradient complexity of $O(epsilon-3)$.
arXiv Detail & Related papers (2023-04-27T06:27:37Z) - A Unified Convergence Theorem for Stochastic Optimization Methods [4.94128206910124]
We provide a fundamental unified convergence theorem used for deriving convergence results for a series of unified optimization methods.
As a direct application, we recover almost sure convergence results under general settings.
arXiv Detail & Related papers (2022-06-08T14:01:42Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - The computational asymptotics of Gaussian variational inference and the
Laplace approximation [19.366538729532856]
We provide a theoretical analysis of the convexity properties of variational inference with a Gaussian family.
We show that with scaled real-data examples both CSVI and CSV improve the likelihood of obtaining the global optimum of their respective optimization problems.
arXiv Detail & Related papers (2021-04-13T01:23:34Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
We propose a novel Sinkhorn Natural Gradient (SiNG) algorithm which acts as a steepest descent method on the probability space endowed with the Sinkhorn divergence.
We show that the Sinkhorn information matrix (SIM), a key component of SiNG, has an explicit expression and can be evaluated accurately in complexity that scales logarithmically.
In our experiments, we quantitatively compare SiNG with state-of-the-art SGD-type solvers on generative tasks to demonstrate its efficiency and efficacy of our method.
arXiv Detail & Related papers (2020-11-09T02:51:17Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
We provide conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the logistical optima.
In particular, we establish local variation of the algorithm without any assumptions on the data-generating process.
We explore a special case involving a semi-orthogonal design under which a global convergence is obtained.
arXiv Detail & Related papers (2020-10-25T05:15:13Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
We prove that Nesterov's extrapolation has the strength to make the individual convergence of gradient descent methods optimal for nonsmooth problems.
We give an extension of the derived algorithms to solve regularized learning tasks with nonsmooth losses in settings.
Our method is applicable as an efficient tool for solving large-scale $l$1-regularized hinge-loss learning problems.
arXiv Detail & Related papers (2020-06-08T03:35:41Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.