Provable convergence guarantees for black-box variational inference
- URL: http://arxiv.org/abs/2306.03638v3
- Date: Thu, 21 Dec 2023 22:37:27 GMT
- Title: Provable convergence guarantees for black-box variational inference
- Authors: Justin Domke, Guillaume Garrigos and Robert Gower
- Abstract summary: Black-box variational inference is widely used in situations where there is no proof that its optimization succeeds.
We provide rigorous guarantees that methods similar to those used in practice converge on realistic inference problems.
- Score: 19.421222110188605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Black-box variational inference is widely used in situations where there is
no proof that its stochastic optimization succeeds. We suggest this is due to a
theoretical gap in existing stochastic optimization proofs: namely the
challenge of gradient estimators with unusual noise bounds, and a composite
non-smooth objective. For dense Gaussian variational families, we observe that
existing gradient estimators based on reparameterization satisfy a quadratic
noise bound and give novel convergence guarantees for proximal and projected
stochastic gradient descent using this bound. This provides rigorous guarantees
that methods similar to those used in practice converge on realistic inference
problems.
Related papers
- Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method [5.025654873456757]
The paper establishes a low sample complexity to obtain a high probability guarantee on the convergence of the proposed method.
A subroutine is developed to solve the proximal subproblem, which also serves as a novel technique for variance reduction.
arXiv Detail & Related papers (2024-02-14T07:34:22Z) - Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands [0.0]
The paper studies the problem of constructing nonparametric simultaneous confidence bands with nonasymptotic and distribition-free guarantees.
The approach is based on the theory of Paley-Wiener kernel reproducing Hilbert spaces.
arXiv Detail & Related papers (2024-01-28T22:43:33Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
gradient, clipping is one of the key algorithmic ingredients to derive good high-probability guarantees.
Clipping can spoil the convergence of the popular methods for composite and distributed optimization.
arXiv Detail & Related papers (2023-10-03T07:49:17Z) - Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization [21.022322975077653]
Methods for solving continuous optimization problems with equality constraints have attracted attention recently.
convergence guarantees have been limited to the expected value of a gradient to measure zero.
New almost-sure convergence guarantees for the primals, Lagrange measures and station measures generated by a SQP algorithm are proved.
arXiv Detail & Related papers (2023-08-07T16:03:40Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - A Unified Convergence Theorem for Stochastic Optimization Methods [4.94128206910124]
We provide a fundamental unified convergence theorem used for deriving convergence results for a series of unified optimization methods.
As a direct application, we recover almost sure convergence results under general settings.
arXiv Detail & Related papers (2022-06-08T14:01:42Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.