Meek Models Shall Inherit the Earth
- URL: http://arxiv.org/abs/2507.07931v1
- Date: Thu, 10 Jul 2025 17:10:07 GMT
- Title: Meek Models Shall Inherit the Earth
- Authors: Hans Gundlach, Jayson Lynch, Neil Thompson,
- Abstract summary: The past decade has seen incredible scaling of AI systems by a few companies, leading to inequality in AI model performance.<n>This paper argues that, contrary to prevailing intuition, the diminishing returns to compute scaling will lead to a convergence of AI model capabilities.
- Score: 1.9647223141071104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The past decade has seen incredible scaling of AI systems by a few companies, leading to inequality in AI model performance. This paper argues that, contrary to prevailing intuition, the diminishing returns to compute scaling will lead to a convergence of AI model capabilities. In other words, meek models (those with limited computation budget) shall inherit the earth, approaching the performance level of the best models overall. We develop a model illustrating that under a fixed-distribution next-token objective, the marginal capability returns to raw compute shrink substantially. Given current scaling practices, we argue that these diminishing returns are strong enough that even companies that can scale their models exponentially faster than other organizations will eventually have little advantage in capabilities. As part of our argument, we give several reasons that proxies like training loss differences capture important capability measures using evidence from benchmark data and theoretical performance models. In addition, we analyze empirical data on the capability difference of AI models over time. Finally, in light of the increasing ability of meek models, we argue that AI strategy and policy require reexamination, and we outline the areas this shift will affect.
Related papers
- Why Do More Experts Fail? A Theoretical Analysis of Model Merging [51.18155031364046]
Model merging dramatically reduces storage and computational resources by combining multiple expert models into a single multi-task model.<n>Recent model merging methods have shown promising results, but struggle to maintain performance gains as the number of merged models increases.<n>We show that the limited effective parameter space imposes a strict constraint on the number of models that can be successfully merged.
arXiv Detail & Related papers (2025-05-27T14:10:46Z) - Great Models Think Alike and this Undermines AI Oversight [47.7725284401918]
We study how model similarity affects both aspects of AI oversight.<n>We propose CAPA: a metric for LM similarity based on overlap in model mistakes.<n>Our work underscores the importance of reporting and correcting for model similarity.
arXiv Detail & Related papers (2025-02-06T18:56:01Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Tending Towards Stability: Convergence Challenges in Small Language Models [3.734405405403176]
Despite their advantages, smaller models frequently underperform compared to their larger counterparts.
This is anecdotally attributed to their reduced representational capacity.
By linking the convergence of layers' activations to their parameters' effective rank, our analyses can guide future work to address inefficiencies in the learning dynamics of small models.
arXiv Detail & Related papers (2024-10-15T09:57:19Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Scaling Laws Do Not Scale [54.72120385955072]
Recent work has argued that as the size of a dataset increases, the performance of a model trained on that dataset will increase.
We argue that this scaling law relationship depends on metrics used to measure performance that may not correspond with how different groups of people perceive the quality of models' output.
Different communities may also have values in tension with each other, leading to difficult, potentially irreconcilable choices about metrics used for model evaluations.
arXiv Detail & Related papers (2023-07-05T15:32:21Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Towards Deeper Deep Reinforcement Learning [42.960199987696306]
In computer vision and natural language processing, state-of-the-art reinforcement learning algorithms often use only small intrinsics.
We show that dataset size is not the limiting factor, and instead argue that instability from the actor in SAC taking gradients through the critic is the culprit.
arXiv Detail & Related papers (2021-06-02T13:41:02Z) - Exploring Sparse Expert Models and Beyond [51.90860155810848]
Mixture-of-Experts (MoE) models can achieve promising results with outrageous large amount of parameters but constant computation cost.
We propose a simple method called expert prototyping that splits experts into different prototypes and applies $k$ top-$1$ routing.
This strategy improves the model quality but maintains constant computational costs, and our further exploration on extremely large-scale models reflects that it is more effective in training larger models.
arXiv Detail & Related papers (2021-05-31T16:12:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.