Moving Sampling Physics-informed Neural Networks induced by Moving Mesh PDE
- URL: http://arxiv.org/abs/2311.16167v4
- Date: Sun, 9 Jun 2024 08:56:30 GMT
- Title: Moving Sampling Physics-informed Neural Networks induced by Moving Mesh PDE
- Authors: Yu Yang, Qihong Yang, Yangtao Deng, Qiaolin He,
- Abstract summary: We propose an end-to-end adaptive sampling neural network (MMPDE-Net) based on the moving mesh method.
We develop an iterative algorithm based on MMPDE-Net, which makes the sampling points more precise and controllable.
- Score: 4.460242992367118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose an end-to-end adaptive sampling neural network (MMPDE-Net) based on the moving mesh method, which can adaptively generate new sampling points by solving the moving mesh PDE. This model focuses on improving the quality of sampling points generation. Moreover, we develop an iterative algorithm based on MMPDE-Net, which makes the sampling points more precise and controllable. Since MMPDE-Net is a framework independent of the deep learning solver, we combine it with physics-informed neural networks (PINN) to propose moving sampling PINN (MS-PINN) and demonstrate its effectiveness by error analysis under some assumptions. Finally, we demonstrate the performance improvement of MS-PINN compared to PINN through numerical experiments of four typical examples, which numerically verify the effectiveness of our method.
Related papers
- Quasi-Random Physics-informed Neural Networks [4.347494885647007]
This paper proposes Quasi-Random Physics-Informed Neural Networks (QRPINNs), which use low-discrepancy sequences for sampling instead of random points directly from the domain.<n>Experiments demonstrate that QRPINNs significantly outperform PINNs and some representative adaptive sampling methods, especially in high-dimensional PDEs.
arXiv Detail & Related papers (2025-07-10T19:15:43Z) - Provably accurate adaptive sampling for collocation points in physics-informed neural networks [11.912466054588327]
Physics-informed Neural Networks (PINN) have emerged as an efficient way to learn surrogate solvers.
We introduce a provably accurate sampling method for collocation points based on the Hessian of the PDE residuals.
arXiv Detail & Related papers (2025-04-01T15:45:08Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks [4.262342157729123]
SGM-PINN is a graph-based importance sampling framework to improve the training efficacy of Physics-Informed Neural Networks (PINNs)
Experiments demonstrate the advantages of the proposed framework, achieving $3times$ faster convergence compared to prior state-of-the-art sampling methods.
arXiv Detail & Related papers (2024-07-10T04:31:50Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
We present a new training paradigm referred to as "gradient boosting" (GB)
Instead of learning the solution of a given PDE using a single neural network directly, our algorithm employs a sequence of neural networks to achieve a superior outcome.
This work also unlocks the door to employing ensemble learning techniques in PINNs.
arXiv Detail & Related papers (2023-02-25T19:11:44Z) - A Novel Adaptive Causal Sampling Method for Physics-Informed Neural
Networks [35.25394937917774]
Informed Neural Networks (PINNs) have become a kind of attractive machine learning method for obtaining solutions of partial differential equations (PDEs)
We introduce temporal causality into adaptive sampling and propose a novel adaptive causal sampling method to improve the performance and efficiency of PINs.
We demonstrate that by utilizing such a relatively simple sampling method, prediction performance can be improved up to two orders of magnitude compared with state-of-the-art results.
arXiv Detail & Related papers (2022-10-24T01:51:08Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Graph Neural Networks for Massive MIMO Detection [8.516590865173407]
We learn a message-passing solution for the inference task of massive multiple-input multiple-output (MIMO) detection in wireless communication.
We adopt a graphical model based on the Markov random field (MRF) where belief propagation (BP) yields poor results when it assumes a uniform prior over the transmitted symbols.
arXiv Detail & Related papers (2020-07-11T07:34:56Z) - MOPS-Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling [86.42733428762513]
MOPS-Net is a novel interpretable deep learning-based method for matrix optimization.
We show that MOPS-Net can achieve favorable performance against state-of-the-art deep learning-based methods over various tasks.
arXiv Detail & Related papers (2020-05-01T14:01:53Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.