論文の概要: TruthTorchLM: A Comprehensive Library for Predicting Truthfulness in LLM Outputs
- arxiv url: http://arxiv.org/abs/2507.08203v1
- Date: Thu, 10 Jul 2025 22:23:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.192043
- Title: TruthTorchLM: A Comprehensive Library for Predicting Truthfulness in LLM Outputs
- Title(参考訳): TruthTorchLM: LLM出力の真さ予測のための総合ライブラリ
- Authors: Duygu Nur Yaldiz, Yavuz Faruk Bakman, Sungmin Kang, Alperen Öziş, Hayrettin Eren Yildiz, Mitash Ashish Shah, Zhiqi Huang, Anoop Kumar, Alfy Samuel, Daben Liu, Sai Praneeth Karimireddy, Salman Avestimehr,
- Abstract要約: 本稿では,30以上の真正性予測手法を備えたオープンソースライブラリTruthTorchLMを紹介する。
TruthTorchLMはHuggingFaceとLiteLLMの両方とシームレスに互換性がある。
また、生成、評価、校正、長文真偽予測のための統一インターフェースも提供する。
- 参考スコア(独自算出の注目度): 24.293676245477585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Large Language Models (LLMs)inevitably produce untruthful responses. Accurately predicting the truthfulness of these outputs is critical, especially in high-stakes settings. To accelerate research in this domain and make truthfulness prediction methods more accessible, we introduce TruthTorchLM an open-source, comprehensive Python library featuring over 30 truthfulness prediction methods, which we refer to as Truth Methods. Unlike existing toolkits such as Guardrails, which focus solely on document-grounded verification, or LM-Polygraph, which is limited to uncertainty-based methods, TruthTorchLM offers a broad and extensible collection of techniques. These methods span diverse tradeoffs in computational cost, access level (e.g., black-box vs white-box), grounding document requirements, and supervision type (self-supervised or supervised). TruthTorchLM is seamlessly compatible with both HuggingFace and LiteLLM, enabling support for locally hosted and API-based models. It also provides a unified interface for generation, evaluation, calibration, and long-form truthfulness prediction, along with a flexible framework for extending the library with new methods. We conduct an evaluation of representative truth methods on three datasets, TriviaQA, GSM8K, and FactScore-Bio. The code is available at https://github.com/Ybakman/TruthTorchLM
- Abstract(参考訳): 生成的大規模言語モデル(LLM)は必然的に非現実的な応答を生成する。
これらのアウトプットの真偽を正確に予測することは、特に高精度な設定において重要である。
この領域の研究を加速し、真性予測手法をより使いやすくするために、30以上の真性予測手法を特徴とするオープンソースで総合的なPythonライブラリであるTruthTorchLMを紹介した。
文書地上検証のみに焦点を当てたガードレールや不確実性に基づく手法に制限されたLM-Polygraphのような既存のツールキットとは異なり、TruthTorchLMは幅広い拡張可能なテクニックのコレクションを提供する。
これらの手法は、計算コスト、アクセスレベル(例えば、ブラックボックス対ホワイトボックス)、文書要求の根拠、監督タイプ(自己監督または監督)の様々なトレードオフにまたがる。
TruthTorchLMはHuggingFaceとLiteLLMの両方とシームレスに互換性があり、ローカルにホストされたAPIベースのモデルをサポートする。
また、生成、評価、校正、長文の真正性予測のための統一されたインターフェースと、ライブラリを新しいメソッドで拡張するための柔軟なフレームワークも提供する。
本稿では,TriviaQA,GSM8K,FactScore-Bioの3つのデータセットに対して,代表的真理法の評価を行う。
コードはhttps://github.com/Ybakman/TruthTorchLMで公開されている。
関連論文リスト
- CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation [31.469511576774252]
大規模言語モデルに対する文脈対応適応型復号法を提案する。
当社のアプローチは、TrathfulQAで平均2.8%の改善を実現しています。
モデルに依存しない,スケーラブルで,効率的な手法では,1世代パスしか必要としない。
論文 参考訳(メタデータ) (2025-08-04T08:28:25Z) - Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond [55.984684518346924]
我々は、知識追跡を逆問題として再考する: 過去の回答を説明できる最小限の自然言語要約を学習し、将来の回答を予測できる。
我々のLanguage Bottleneck Model(LBM)は、解釈可能な知識要約を書くエンコーダLLMと、その要約テキストのみを使用して生徒の反応を再構成し予測しなければならないフリーズデコーダLLMで構成されている。
合成算術ベンチマークと大規模Eediデータセットの実験により、LBMは最先端のKT法と直接LLM法の精度に匹敵する一方で、受講者軌道のオーダーを少なくすることを示した。
論文 参考訳(メタデータ) (2025-06-20T13:21:14Z) - Hey, That's My Data! Label-Only Dataset Inference in Large Language Models [63.35066172530291]
CatShiftはラベルのみのデータセット推論フレームワークである。
LLMは、新しいデータに晒されたとき、学習した知識を上書きする傾向にある。
論文 参考訳(メタデータ) (2025-06-06T13:02:59Z) - Are the Hidden States Hiding Something? Testing the Limits of Factuality-Encoding Capabilities in LLMs [48.202202256201815]
大型言語モデル(LLM)における実名幻覚
不正確なコンテンツや偽造コンテンツを生成することによって、信頼性とユーザ信頼を損なう。
近年の研究では、偽文を生成する際、LLMの内部状態が真偽に関する情報を符号化していることが示唆されている。
論文 参考訳(メタデータ) (2025-05-22T11:00:53Z) - CheckEmbed: Effective Verification of LLM Solutions to Open-Ended Tasks [14.603394022550864]
CheckEmbed (CE)は、大規模言語モデル(LLM)の単純でスケーラブルで正確な検証方法である。
CEは、全問合せレベルで、高速でセマンティックにリッチな比較を行い、精度とスケーラビリティの両方において重要な制限を克服します。
実験の結果,CEは閉じたタスクとオープンエンドタスクの両方の幻覚を確実に検出することがわかった。
論文 参考訳(メタデータ) (2024-06-04T17:42:21Z) - SPOT: Text Source Prediction from Originality Score Thresholding [6.790905400046194]
対策は誤報を検出することを目的としており、通常、あらゆる情報の関連性を認識するために訓練されたドメイン固有モデルを含む。
情報の有効性を評価する代わりに,信頼の観点からLLM生成テキストを調べることを提案する。
論文 参考訳(メタデータ) (2024-05-30T21:51:01Z) - Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
我々は,人文テキストがLLM生成テキストよりも文法的誤りを多く含んでいるという観察に基づく,シンプルで効果的なブラックボックスゼロショット検出手法を提案する。
実験結果から,本手法はゼロショット法や教師あり手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-07T12:57:01Z) - Enhanced Language Model Truthfulness with Learnable Intervention and Uncertainty Expression [19.69104070561701]
大きな言語モデル(LLM)は長文で一貫性のあるテキストを生成することができるが、事実を幻覚させることが多い。
真性最適化のための学習可能なインターベンション手法であるLITOを提案する。
複数のLLMと質問応答データセットの実験は、LITOがタスク精度を維持しながら真理性を改善することを示した。
論文 参考訳(メタデータ) (2024-05-01T03:50:09Z) - Generative Text Steganography with Large Language Model [10.572149957139736]
LLM-Stegaと呼ばれる大規模言語モデルのユーザインタフェースに基づくブラックボックス生成テキストステガノグラフィー手法。
まず、キーワードセットを構築し、秘密メッセージを埋め込むための新しい暗号化されたステガノグラフマッピングを設計する。
総合的な実験により、LLM-Stegaは現在の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-04-16T02:19:28Z) - Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers [121.53749383203792]
本稿では,大規模言語モデル (LLM) 生成応答の事実性に注釈を付けるための総合的なエンドツーエンドソリューションを提案する。
オープンドメインの文書レベルの事実性ベンチマークを,クレーム,文,文書の3段階の粒度で構築する。
予備実験によると、FacTool、FactScore、Perplexityは虚偽の主張を識別するのに苦労している。
論文 参考訳(メタデータ) (2023-11-15T14:41:57Z) - Generating Benchmarks for Factuality Evaluation of Language Models [61.69950787311278]
FACTOR: Factual Assessment via Corpus Transformation, a scalable approach for LM factuality。
FACTORは、興味のある事実のコーパスをLMの正当性を評価するベンチマークに自動的に変換し、コーパスから真事実を生成する。
その結果, (i) ベンチマークスコアはモデルサイズに応じて増加し, LMが検索によって拡張されたときに向上する; (ii) ベンチマークスコアとパープレキシティは必ずしもモデルランキングに一致しない; (iii) パープレキシティとベンチマークスコアが一致しない場合, 後者はオープンエンド世代における事実性を反映する。
論文 参考訳(メタデータ) (2023-07-13T17:14:38Z) - The Internal State of an LLM Knows When It's Lying [18.886091925252174]
大規模言語モデル(LLM)は、様々なタスクにおいて例外的なパフォーマンスを示している。
彼らの最も顕著な欠点の1つは、自信のあるトーンで不正確または偽の情報を生成することである。
我々は, LLMの内部状態が文の真偽を明らかにするのに有効であることを示す証拠を提供する。
論文 参考訳(メタデータ) (2023-04-26T02:49:38Z) - SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for
Generative Large Language Models [55.60306377044225]
「SelfCheckGPT」は、ブラックボックスモデルの応答をファクトチェックする単純なサンプリングベースアプローチである。
本稿では,GPT-3を用いてWikiBioデータセットから個人に関するパスを生成する手法について検討する。
論文 参考訳(メタデータ) (2023-03-15T19:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。