論文の概要: Data Generation without Function Estimation
- arxiv url: http://arxiv.org/abs/2507.08239v1
- Date: Fri, 11 Jul 2025 00:51:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.210587
- Title: Data Generation without Function Estimation
- Title(参考訳): 関数推定のないデータ生成
- Authors: Hadi Daneshmand, Ashkan Soleymani,
- Abstract要約: スコア関数(または他の集団密度依存関数)を推定することは、ほとんどの生成モデルの基本的な構成要素である。
位置が決定論的に(逆)勾配勾配で更新された点の集合は、任意のデータ分布に均一な分布を伝達することができる。
- 参考スコア(独自算出の注目度): 3.1296907816698996
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating the score function (or other population-density-dependent functions) is a fundamental component of most generative models. However, such function estimation is computationally and statistically challenging. Can we avoid function estimation for data generation? We propose an estimation-free generative method: A set of points whose locations are deterministically updated with (inverse) gradient descent can transport a uniform distribution to arbitrary data distribution, in the mean field regime, without function estimation, training neural networks, and even noise injection. The proposed method is built upon recent advances in the physics of interacting particles. We show, both theoretically and experimentally, that these advances can be leveraged to develop novel generative methods.
- Abstract(参考訳): スコア関数(または他の集団密度依存関数)を推定することは、ほとんどの生成モデルの基本的な構成要素である。
しかし、そのような関数推定は計算的かつ統計的に困難である。
データ生成の関数推定は避けられるか?
位置が(逆)勾配勾配で決定的に更新された点の集合は、関数推定、ニューラルネットワークのトレーニング、さらにはノイズ注入なしに、平均的なフィールド状態において、任意のデータ分布に均一な分布を伝達することができる。
提案手法は相互作用粒子の物理学の最近の進歩に基づいて構築されている。
理論的にも実験的にも,これらの進歩は新たな生成手法の開発に活用できることが示されている。
関連論文リスト
- A Malliavin calculus approach to score functions in diffusion generative models [5.124031464211652]
我々は、幅広い非線形拡散生成モデルに対するスコア関数の正確な閉形式、式を導出する。
我々の結果は微分方程式のより広範なクラスに拡張することができ、スコアベース拡散生成モデルの開発のための新しい方向を開拓することができる。
論文 参考訳(メタデータ) (2025-07-08T00:20:57Z) - Bayesian Kernel Regression for Functional Data [1.4501446815590895]
教師付き学習では、予測される出力変数はしばしば関数として表現される。
カーネル手法に基づく関数出力回帰モデルを提案する。
論文 参考訳(メタデータ) (2025-03-17T19:28:27Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Conditional Distribution Function Estimation Using Neural Networks for
Censored and Uncensored Data [0.0]
検閲されたデータと検閲されていないデータの両方に対してニューラルネットワークを用いて条件分布関数を推定することを検討する。
本研究では,提案手法が望ましい性能を有することを示す一方で,モデル仮定に違反した場合に偏りのある推定値が得られることを示す。
論文 参考訳(メタデータ) (2022-07-06T01:12:22Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Probabilistic Kolmogorov-Arnold Network [1.4732811715354455]
本稿では,アレータティック不確実性の場合に出力の確率分布を推定する手法を提案する。
提案手法は, 出力の入力依存確率分布と, 入力による分布型の変化を対象とする。
本手法は任意の回帰モデルに適用できるが, 計算効率のよいモデルの構築につながるため,kansと組み合わせる。
論文 参考訳(メタデータ) (2021-04-04T23:49:15Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
画像や時系列などの連続的な入力信号は、不規則にサンプリングされたり、値が欠けていたりすることは、既存のディープラーニング手法では困難である。
ガウス過程(GP)として特徴を表す確率的畳み込みニューラルネットワークを提案する。
次に、畳み込み層を、このGP上で定義されたPDEの進化として定義し、次いで非線形性とする。
実験では,SuperPixel-MNISTデータセットの先行技術と医療時間2012データセットの競合性能から,提案手法の誤差を3倍に削減できることが示されている。
論文 参考訳(メタデータ) (2020-10-21T10:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。