Data-Driven Dimensional Synthesis of Diverse Planar Four-bar Function Generation Mechanisms via Direct Parameterization
- URL: http://arxiv.org/abs/2507.08269v1
- Date: Fri, 11 Jul 2025 02:32:29 GMT
- Title: Data-Driven Dimensional Synthesis of Diverse Planar Four-bar Function Generation Mechanisms via Direct Parameterization
- Authors: Woon Ryong Kim, Jaeheun Jung, Jeong Un Ha, Donghun Lee, Jae Kyung Shim,
- Abstract summary: We propose a data-driven framework that bypasses traditional equation-solving and optimization by leveraging supervised learning.<n>Our method combines a synthetic dataset, an LSTM-based neural network for handling sequential precision points, and a Mixture of Experts architecture tailored to different linkage types.<n> Experiments show our approach produces accurate, defect-free linkages across various configurations.
- Score: 2.499517394718329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dimensional synthesis of planar four-bar mechanisms is a challenging inverse problem in kinematics, requiring the determination of mechanism dimensions from desired motion specifications. We propose a data-driven framework that bypasses traditional equation-solving and optimization by leveraging supervised learning. Our method combines a synthetic dataset, an LSTM-based neural network for handling sequential precision points, and a Mixture of Experts (MoE) architecture tailored to different linkage types. Each expert model is trained on type-specific data and guided by a type-specifying layer, enabling both single-type and multi-type synthesis. A novel simulation metric evaluates prediction quality by comparing desired and generated motions. Experiments show our approach produces accurate, defect-free linkages across various configurations. This enables intuitive and efficient mechanism design, even for non-expert users, and opens new possibilities for scalable and flexible synthesis in kinematic design.
Related papers
- Selection Mechanisms for Sequence Modeling using Linear State Space Models [2.4374097382908477]
We introduce an alternative selection mechanism inspired by control theory methodologies.<n>We propose a novel residual generator for selection, drawing an analogy to fault detection strategies in Linear Time-Invariant (LTI) systems.<n>Our approach combines multiple LTI systems, preserving their beneficial properties during training while achieving comparable selectivity.
arXiv Detail & Related papers (2025-05-23T14:08:56Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.<n>Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Generating Diverse Synthetic Datasets for Evaluation of Real-life Recommender Systems [0.0]
Synthetic datasets are important for evaluating and testing machine learning models.<n>We develop a novel framework for generating synthetic datasets that are diverse and statistically coherent.<n>The framework is available as a free open Python package to facilitate research with minimal friction.
arXiv Detail & Related papers (2024-11-27T09:53:14Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.