Optimal and Practical Batched Linear Bandit Algorithm
- URL: http://arxiv.org/abs/2507.08438v1
- Date: Fri, 11 Jul 2025 09:29:28 GMT
- Title: Optimal and Practical Batched Linear Bandit Algorithm
- Authors: Sanghoon Yu, Min-hwan Oh,
- Abstract summary: We study the linear bandit problem under limited adaptivity, known as the batched linear bandit.<n>We propose textttBLAE, a novel batched algorithm that integrates arm elimination with regularized G-optimal design.<n>Our analysis introduces new techniques for batch-wise optimal design and refined concentration bounds.
- Score: 8.087699764574788
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the linear bandit problem under limited adaptivity, known as the batched linear bandit. While existing approaches can achieve near-optimal regret in theory, they are often computationally prohibitive or underperform in practice. We propose \texttt{BLAE}, a novel batched algorithm that integrates arm elimination with regularized G-optimal design, achieving the minimax optimal regret (up to logarithmic factors in $T$) in both large-$K$ and small-$K$ regimes for the first time, while using only $O(\log\log T)$ batches. Our analysis introduces new techniques for batch-wise optimal design and refined concentration bounds. Crucially, \texttt{BLAE} demonstrates low computational overhead and strong empirical performance, outperforming state-of-the-art methods in extensive numerical evaluations. Thus, \texttt{BLAE} is the first algorithm to combine provable minimax-optimality in all regimes and practical superiority in batched linear bandits.
Related papers
- Optimal Batched Linear Bandits [9.795531604467406]
We introduce the E$4$ algorithm for the batched linear bandit problem, incorporating an Explore-Estimate-Exploit framework.
With a proper choice of exploration rate, we prove E$4$ achieves finite--time minimax optimal regret with only $O(loglog T)$ batches.
We show that with another choice of exploration rate E$4$ achieves an instance-dependent regret bound requiring at most $O(log T)$ batches.
arXiv Detail & Related papers (2024-06-06T14:57:52Z) - Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - Almost Optimal Batch-Regret Tradeoff for Batch Linear Contextual Bandits [45.43968161616453]
We study the optimal batch-regret tradeoff for batch linear contextual bandits.
We prove its regret guarantee, which features a two-phase expression as the time horizon $T$ grows.
We also prove a new matrix inequality concentration with dependence on their dynamic upper bounds.
arXiv Detail & Related papers (2021-10-15T12:32:33Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Lenient Regret and Good-Action Identification in Gaussian Process
Bandits [43.03669155559218]
We study the problem of Gaussian process (GP) bandits under relaxed optimization criteria stating that any function value above a certain threshold is "good enough"
On the practical side, we consider the problem of finding a single "good action" according to a known pre-specified threshold, and introduce several good-action identification algorithms that exploit knowledge of the threshold.
arXiv Detail & Related papers (2021-02-11T01:16:58Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.