Semantic-Augmented Latent Topic Modeling with LLM-in-the-Loop
- URL: http://arxiv.org/abs/2507.08498v1
- Date: Fri, 11 Jul 2025 11:20:39 GMT
- Title: Semantic-Augmented Latent Topic Modeling with LLM-in-the-Loop
- Authors: Mengze Hong, Chen Jason Zhang, Di Jiang,
- Abstract summary: Latent Dirichlet Allocation (LDA) is a prominent generative probabilistic model used for uncovering abstract topics within document collections.<n>In this paper, we explore the effectiveness of augmenting topic models with Large Language Models (LLMs) through integration into two key phases: Initialization and Post-Correction.
- Score: 9.763247646329392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent Dirichlet Allocation (LDA) is a prominent generative probabilistic model used for uncovering abstract topics within document collections. In this paper, we explore the effectiveness of augmenting topic models with Large Language Models (LLMs) through integration into two key phases: Initialization and Post-Correction. Since the LDA is highly dependent on the quality of its initialization, we conduct extensive experiments on the LLM-guided topic clustering for initializing the Gibbs sampling algorithm. Interestingly, the experimental results reveal that while the proposed initialization strategy improves the early iterations of LDA, it has no effect on the convergence and yields the worst performance compared to the baselines. The LLM-enabled post-correction, on the other hand, achieved a promising improvement of 5.86% in the coherence evaluation. These results highlight the practical benefits of the LLM-in-the-loop approach and challenge the belief that LLMs are always the superior text mining alternative.
Related papers
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components.<n>DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted, progressively improving RAG components.<n>Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning.
arXiv Detail & Related papers (2025-05-05T23:54:53Z) - LENSLLM: Unveiling Fine-Tuning Dynamics for LLM Selection [11.353302879735862]
Open-sourced Large Language Models (LLMs) and diverse downstream tasks require efficient model selection.<n>We propose a novel theoretical framework that provides a proper lens to assess the generalization capabilities of LLMs.<n>In particular, we first derive a PAC-Bayesian Generalization Bound that unveils fine-tuning dynamics of LLMs.<n>We then introduce LENSLLM, a Neural Tangent Kernel (NTK)-based Rectified Scaling Model that enables accurate performance predictions.
arXiv Detail & Related papers (2025-05-01T15:07:32Z) - Decoding Recommendation Behaviors of In-Context Learning LLMs Through Gradient Descent [15.425423867768163]
We propose a theoretical model, the LLM-ICL Recommendation Equivalent Gradient Descent model (LRGD) in this paper.<n>We demonstrate that the ICL inference process in LLM aligns with the training procedure of its dual model, producing token predictions equivalent to the dual model's testing outputs.<n>To further improve demonstration effectiveness, prevent performance collapse, and ensure long-term adaptability, we also propose a two-stage optimization process in practice.
arXiv Detail & Related papers (2025-04-06T06:36:45Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Sequential Large Language Model-Based Hyper-parameter Optimization [0.0]
This study introduces SLLMBO, an innovative framework leveraging large language models (LLMs) for hyper- parameter optimization (HPO)<n>It incorporates dynamic search space adaptability, enhanced parameter space exploitation, and a novel LLM-tree-structured parzen estimator (LLM-TPE) sampler.<n>This comprehensive benchmarking evaluates multiple LLMs, including GPT-3.5-Turbo, GPT-4o, Claude-Sonnet-3.5, and Gemini-1.5-Flash.
arXiv Detail & Related papers (2024-10-27T00:50:30Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.