論文の概要: Introspection of Thought Helps AI Agents
- arxiv url: http://arxiv.org/abs/2507.08664v1
- Date: Fri, 11 Jul 2025 15:03:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.398616
- Title: Introspection of Thought Helps AI Agents
- Title(参考訳): 思考のイントロスペクションはAIエージェントを助ける
- Authors: Haoran Sun, Shaoning Zeng,
- Abstract要約: 大規模言語モデル(LLM)とマルチモーダルLLM(MLLM)が最も重要な役割を担い、AIエージェントの初期能力と限界を決定する。
本稿では,新しいLLM-Read コードを即座に設計することで,思考のイントロスペクション(INoT)を用いたAIエージェント推論フレームワークを提案する。
INoTの有効性は, 平均性能が7.95%向上し, ベースラインを超えることが確認された。
- 参考スコア(独自算出の注目度): 19.04968632268433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI Agents rely on Large Language Models (LLMs) and Multimodal-LLMs (MLLMs) to perform interpretation and inference in text and image tasks without post-training, where LLMs and MLLMs play the most critical role and determine the initial ability and limitations of AI Agents. Usually, AI Agents utilize sophisticated prompt engineering and external reasoning framework to obtain a promising interaction with LLMs, e.g., Chain-of-Thought, Iteration of Thought and Image-of-Thought. However, they are still constrained by the inherent limitations of LLM in understanding natural language, and the iterative reasoning process will generate a large amount of inference cost. To this end, we propose a novel AI Agent Reasoning Framework with Introspection of Thought (INoT) by designing a new LLM-Read code in prompt. It enables LLM to execute programmatic dialogue reasoning processes following the code in prompt. Therefore, self-denial and reflection occur within LLM instead of outside LLM, which can reduce token cost effectively. Through our experiments on six benchmarks for three different tasks, the effectiveness of INoT is verified, with an average improvement of 7.95\% in performance, exceeding the baselines. Furthermore, the token cost of INoT is lower on average than the best performing method at baseline by 58.3\%. In addition, we demonstrate the versatility of INoT in image interpretation and inference through verification experiments.
- Abstract(参考訳): AIエージェントは、Large Language Models(LLM)とMultimodal-LLMs(MLLM)に依存して、後トレーニングなしでテキストや画像タスクの解釈と推論を行う。
通常、AIエージェントは高度なプロンプトエンジニアリングと外部推論フレームワークを使用して、LLM、例えばChain-of-Thought、Iteration of Thought、Image-of-Thoughtとの有望なインタラクションを得る。
しかし、これらは自然言語理解におけるLLM固有の制限に制約されており、反復的推論プロセスは大量の推論コストを発生させる。
そこで本研究では,新しいLLM-Read コードを即座に設計することで,思考のイントロスペクションを伴うAIエージェント推論フレームワーク(INoT)を提案する。
LLMは、コードに従ってプログラムによる対話推論プロセスを実行することができる。
したがって、自己否定と反射は LLM の外部ではなく LLM 内で発生し、トークンコストを効果的に削減することができる。
3つのタスクに対する6つのベンチマーク実験を通じて、INoTの有効性を検証し、パフォーマンスが平均7.95\%向上し、ベースラインを上回った。
さらに、INoTのトークンコストは、ベースラインでの最高の実行方法よりも平均で58.3\%低い。
さらに,画像の解釈と推論におけるINoTの有用性を検証実験により示す。
関連論文リスト
- IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM [15.260794368585692]
自動オペレーションリサーチ問題解決のためのLLMを推論するAIエージェントフレームワークであるOR-LLM-Agentを提案する。
GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, ORLMなどの高度な手法よりも, OR-LLM-Agentの精度を7%以上向上させることを示す。
論文 参考訳(メタデータ) (2025-03-13T03:40:50Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
LLMエージェントに与えられたプロンプトのステップバイステップ命令を最適化するために、段階的な降下を行う新しい方法、textscRePromptを提案する。
中間的なフィードバックを活用することで、 textscRePromptは最終的なソリューションチェッカーを必要とせずにプロンプトを最適化できる。
論文 参考訳(メタデータ) (2024-06-17T01:23:11Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。