HieraRS: A Hierarchical Segmentation Paradigm for Remote Sensing Enabling Multi-Granularity Interpretation and Cross-Domain Transfer
- URL: http://arxiv.org/abs/2507.08741v1
- Date: Fri, 11 Jul 2025 16:44:01 GMT
- Title: HieraRS: A Hierarchical Segmentation Paradigm for Remote Sensing Enabling Multi-Granularity Interpretation and Cross-Domain Transfer
- Authors: Tianlong Ai, Tianzhu Liu, Haochen Jiang, Yanfeng Gu,
- Abstract summary: HieraRS is a novel hierarchical interpretation paradigm that enables multi-granularity predictions.<n>It supports the efficient transfer of LCLU models to cross-domain tasks with heterogeneous tree-structured hierarchies.
- Score: 3.510584282402788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical land cover and land use (LCLU) classification aims to assign pixel-wise labels with multiple levels of semantic granularity to remote sensing (RS) imagery. However, existing deep learning-based methods face two major challenges: 1) They predominantly adopt a flat classification paradigm, which limits their ability to generate end-to-end multi-granularity hierarchical predictions aligned with tree-structured hierarchies used in practice. 2) Most cross-domain studies focus on performance degradation caused by sensor or scene variations, with limited attention to transferring LCLU models to cross-domain tasks with heterogeneous hierarchies (e.g., LCLU to crop classification). These limitations hinder the flexibility and generalization of LCLU models in practical applications. To address these challenges, we propose HieraRS, a novel hierarchical interpretation paradigm that enables multi-granularity predictions and supports the efficient transfer of LCLU models to cross-domain tasks with heterogeneous tree-structured hierarchies. We introduce the Bidirectional Hierarchical Consistency Constraint Mechanism (BHCCM), which can be seamlessly integrated into mainstream flat classification models to generate hierarchical predictions, while improving both semantic consistency and classification accuracy. Furthermore, we present TransLU, a dual-branch cross-domain transfer framework comprising two key components: Cross-Domain Knowledge Sharing (CDKS) and Cross-Domain Semantic Alignment (CDSA). TransLU supports dynamic category expansion and facilitates the effective adaptation of LCLU models to heterogeneous hierarchies. In addition, we construct MM-5B, a large-scale multi-modal hierarchical land use dataset featuring pixel-wise annotations. The code and MM-5B dataset will be released at: https://github.com/AI-Tianlong/HieraRS.
Related papers
- DART: Dual Adaptive Refinement Transfer for Open-Vocabulary Multi-Label Recognition [59.203152078315235]
Open-Vocabulary Multi-Label Recognition (OV-MLR) aims to identify multiple seen and unseen object categories within an image.<n> Vision-Language Pre-training models offer a strong open-vocabulary foundation, but struggle with fine-grained localization under weak supervision.<n>We propose the Dual Adaptive Refinement Transfer (DART) framework to overcome these limitations.
arXiv Detail & Related papers (2025-08-07T17:22:33Z) - Learning and Evaluating Hierarchical Feature Representations [3.770103075126785]
We propose a novel framework, Hierarchical Composition of Orthogonal Subspaces (Hier-COS)<n>Hier-COS learns to map deep feature embeddings into a vector space that is, by design, consistent with the structure of a given taxonomy tree.<n>We demonstrate that Hier-COS achieves state-of-the-art hierarchical performance across all the datasets while simultaneously beating top-1 accuracy in all but one case.
arXiv Detail & Related papers (2025-03-10T20:59:41Z) - Decomposition-based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation [30.606689882397223]
Unsupervised domain adaptation (UDA) techniques are vital for semantic segmentation in geosciences.
Most existing UDA methods, which focus on domain alignment at the high-level feature space, struggle to simultaneously retain local spatial details and global contextual semantics.
A novel decomposition scheme is proposed to guide domain-invariant representation learning.
arXiv Detail & Related papers (2024-04-06T07:13:49Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
We propose a two-stage model for domain adaptation called textbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA).
While the adversarial component facilitates domain-level alignment, two-stage contrastive learning exploits class information to achieve higher intra-class compactness across domains.
arXiv Detail & Related papers (2023-01-10T07:43:21Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones.
We propose a novel hierarchical semantic-visual adaptation (HSVA) framework to align semantic and visual domains.
Experiments on four benchmark datasets demonstrate HSVA achieves superior performance on both conventional and generalized ZSL.
arXiv Detail & Related papers (2021-09-30T14:27:50Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain.
Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature.
In this paper, we develop this work on the method of class-level alignment.
arXiv Detail & Related papers (2021-09-14T09:23:27Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
We present a novel universal object detector called Universal-RCNN.
We first generate a global semantic pool by integrating all high-level semantic representation of all the categories.
An Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN.
arXiv Detail & Related papers (2020-02-18T07:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.