論文の概要: Advancing network resilience theories with symbolized reinforcement learning
- arxiv url: http://arxiv.org/abs/2507.08827v1
- Date: Fri, 04 Jul 2025 19:19:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-20 22:54:22.098198
- Title: Advancing network resilience theories with symbolized reinforcement learning
- Title(参考訳): 記号付き強化学習によるネットワークレジリエンス理論の進化
- Authors: Yu Zheng, Jingtao Ding, Depeng Jin, Jianxi Gao, Yong Li,
- Abstract要約: 現在のレジリエンス理論は、トポロジーの単一視点からこの問題に対処し、システム力学の重要な役割を無視している。
本稿では,AIによる複雑なネットワーク分割問題の解法から学習したレジリエンス理論の自動解法について報告する。
提案された自己帰納的アプローチは、トポロジーと力学の両方を考慮に入れた最初のレジリエンス理論を発見する。
- 参考スコア(独自算出の注目度): 29.97738497697876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many complex networks display remarkable resilience under external perturbations, internal failures and environmental changes, yet they can swiftly deteriorate into dysfunction upon the removal of a few keystone nodes. Discovering theories that measure network resilience offers the potential to prevent catastrophic collapses--from species extinctions to financial crise--with profound implications for real-world systems. Current resilience theories address the problem from a single perspective of topology, neglecting the crucial role of system dynamics, due to the intrinsic complexity of the coupling between topology and dynamics which exceeds the capabilities of human analytical methods. Here, we report an automatic method for resilience theory discovery, which learns from how AI solves a complicated network dismantling problem and symbolizes its network attack strategies into theoretical formulas. This proposed self-inductive approach discovers the first resilience theory that accounts for both topology and dynamics, highlighting how the correlation between node degree and state shapes overall network resilience, and offering insights for designing early warning signals of systematic collapses. Additionally, our approach discovers formulas that refine existing well-established resilience theories with over 37.5% improvement in accuracy, significantly advancing human understanding of complex networks with AI.
- Abstract(参考訳): 多くの複雑なネットワークは、外部の摂動、内部の故障、環境の変化の下で顕著なレジリエンスを示すが、いくつかのキーストーンノードの除去によって急速に機能不全に陥る可能性がある。
ネットワークのレジリエンスを測定する理論は、生物の絶滅から金融危機に至るまで、破滅的な崩壊を防ぐ可能性を秘めている。
現在のレジリエンス理論は、トポロジの能力を超えたトポロジとダイナミクスの結合が本質的に複雑になるため、システム力学の重要な役割を無視して、トポロジの単一視点からこの問題に対処している。
本稿では、AIが複雑なネットワーク分割問題を解く方法から学習し、ネットワーク攻撃戦略を理論的公式に象徴するレジリエンス理論発見の自動手法について報告する。
提案した自己帰納的アプローチは、トポロジとダイナミクスの両方を考慮に入れた最初のレジリエンス理論を発見し、ノード次数と状態形状の相関がネットワーク全体のレジリエンスに与える影響を強調し、体系的な崩壊の早期警告信号を設計するための洞察を提供する。
さらに,既存の確立されたレジリエンス理論を37.5%以上の精度で洗練し,AIを用いた複雑なネットワークの人間の理解を著しく向上させる公式を発見した。
関連論文リスト
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
本稿では,ネットワークトポロジとダイナミックスの生成的データ拡張を通じてこの問題に対処するために設計された,複雑なネットワークに対する新しいレジリエンス予測フレームワークを提案する。
3つのネットワークデータセットの実験結果から,提案するフレームワークであるTDNetGenは,最大85%~95%の精度で高い予測精度を達成可能であることが示された。
論文 参考訳(メタデータ) (2024-08-19T09:20:31Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
ニューラルネットワークは、敵の攻撃として現れる小さな非ランダムな摂動に固有の脆弱性を示す。
この機構と量子物理学の不確実性原理の間に数学的に一致し、予想外の学際性に光を当てる。
論文 参考訳(メタデータ) (2024-02-16T02:11:27Z) - Universal Scaling Laws of Absorbing Phase Transitions in Artificial Deep Neural Networks [0.8932296777085644]
信号伝播ダイナミクスの位相境界付近で動作する従来の人工深層ニューラルネットワークは、カオスのエッジとしても知られ、位相遷移を吸収する普遍的なスケーリング法則を示す。
我々は、伝搬力学の完全な決定論的性質を利用して、ニューラルネットワークの信号崩壊と吸収状態の類似を解明する。
論文 参考訳(メタデータ) (2023-07-05T13:39:02Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
本稿では,生体神経ネットワークにおける信号伝達を前方方向と後方方向の両方で記述するための新しい規範的アプローチを提案する。
このフレームワークは、従来のニューラルネットワークとバックプロパゲーションアルゴリズムの生物学的評価可能性に関する多くの懸念に対処する。
提案手法は,前方信号伝搬路と後方信号伝搬路の重み対称性問題に対する自然な解法を提供する。
論文 参考訳(メタデータ) (2023-06-07T22:14:33Z) - Understanding plasticity in neural networks [41.79540750236036]
可塑性は、ニューラルネットワークが新しい情報に反応して予測を素早く変更する能力である。
深層ニューラルネットワークは、比較的単純な学習問題であっても、トレーニングの過程で可塑性を失うことが知られている。
論文 参考訳(メタデータ) (2023-03-02T18:47:51Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
ニューラルネットワークが様々な情報源からの情報を統合する能力は、トレーニングの初期段階において、適切な相関した信号に晒されることに批判的になることを示す。
臨界周期は、訓練されたシステムとその学習された表現の最終性能を決定づける、複雑で不安定な初期過渡的ダイナミクスから生じることを示す。
論文 参考訳(メタデータ) (2022-10-06T23:50:38Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
非負のモノトーンアクティベーション機能を備えたフィードフォワードニューラルネットワークの重量変動に対する最初の形式解析を提供します。
また,重みの摂動に対して一般化し頑健なニューラルネットワークを訓練するための新しい理論駆動損失関数を設計した。
論文 参考訳(メタデータ) (2021-03-03T06:17:03Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
本稿では,ディープラーニングの最適化を一般化誤差と関連づけて解析する理論フレームワークを提案する。
ニューラルネットワーク最適化分析のための平均場理論やニューラル・タンジェント・カーネル理論のような既存のフレームワークは、そのグローバル収束を示すために、ネットワークの無限幅の限界を取る必要がある。
論文 参考訳(メタデータ) (2020-07-11T18:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。