論文の概要: TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics
- arxiv url: http://arxiv.org/abs/2408.09825v1
- Date: Mon, 19 Aug 2024 09:20:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:54:42.559325
- Title: TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics
- Title(参考訳): TDNetGen: トポロジとダイナミクスの生成による複雑なネットワークレジリエンス予測の強化
- Authors: Chang Liu, Jingtao Ding, Yiwen Song, Yong Li,
- Abstract要約: 本稿では,ネットワークトポロジとダイナミックスの生成的データ拡張を通じてこの問題に対処するために設計された,複雑なネットワークに対する新しいレジリエンス予測フレームワークを提案する。
3つのネットワークデータセットの実験結果から,提案するフレームワークであるTDNetGenは,最大85%~95%の精度で高い予測精度を達成可能であることが示された。
- 参考スコア(独自算出の注目度): 14.25304439234864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the resilience of complex networks, which represents the ability to retain fundamental functionality amidst external perturbations or internal failures, plays a critical role in understanding and improving real-world complex systems. Traditional theoretical approaches grounded in nonlinear dynamical systems rely on prior knowledge of network dynamics. On the other hand, data-driven approaches frequently encounter the challenge of insufficient labeled data, a predicament commonly observed in real-world scenarios. In this paper, we introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics. The core idea is the strategic utilization of the inherent joint distribution present in unlabeled network data, facilitating the learning process of the resilience predictor by illuminating the relationship between network topology and dynamics. Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%. Furthermore, the framework still demonstrates a pronounced augmentation capability in extreme low-data regimes, thereby underscoring its utility and robustness in enhancing the prediction of network resilience. We have open-sourced our code in the following link, https://github.com/tsinghua-fib-lab/TDNetGen.
- Abstract(参考訳): 複雑なネットワークのレジリエンスを予測することは、外部の摂動や内部の障害の中で基本的な機能を維持できる能力であり、現実世界の複雑なシステムを理解し改善する上で重要な役割を果たす。
非線形力学系に基づく従来の理論的アプローチは、ネットワーク力学の事前知識に依存している。
一方、データ駆動アプローチは、実世界のシナリオでよく見られる、ラベル付きデータ不足の課題にしばしば遭遇する。
本稿では,ネットワークトポロジとダイナミックスの生成的データ拡張を通じてこの問題に対処する,複雑なネットワークのための新しいレジリエンス予測フレームワークを提案する。
中心となる考え方は、ラベルのないネットワークデータに存在する固有結合分布の戦略的利用であり、ネットワークトポロジとダイナミクスの関係を照らすことにより、レジリエンス予測器の学習プロセスを容易にする。
3つのネットワークデータセットの実験結果から,提案するフレームワークであるTDNetGenは,最大85%~95%の精度で高い予測精度を達成可能であることが示された。
さらに、このフレームワークは、極端に低データ状態における顕著な拡張能力を示しており、ネットワークレジリエンスの予測を強化するための実用性と堅牢性を強調している。
コードについては、https://github.com/tsinghua-fib-lab/TDNetGenというリンクで公開しています。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
本稿では,グラフ畳み込みネットワークとハイパー構造表現学習フレームワークを,精度,信頼性,計算効率のよい分散グリッド計画に活用する方法を示す。
数値実験の結果,提案手法は計算効率を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2022-11-14T01:29:09Z) - On the Application of Data-Driven Deep Neural Networks in Linear and
Nonlinear Structural Dynamics [28.979990729816638]
線形および非線形構造力学系のサロゲートとしてディープニューラルネットワーク(DNN)モデルを用いる。
焦点は、完全に接続された、疎結合で、畳み込みネットワーク層を使った効率的なネットワークアーキテクチャの開発である。
提案したDNNは,高調波負荷下での線形および非線形動的応答の予測に有効かつ正確なサロゲートとして利用できることを示す。
論文 参考訳(メタデータ) (2021-11-03T13:22:19Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
パラメータ数を用いて,関数のクラスを複素反応ネットワークで近似できることを示す。
経験的リスク最小化については,複素反応ネットワークの臨界点集合が実数値ネットワークの固有部分集合であることを示す。
論文 参考訳(メタデータ) (2021-08-15T10:13:49Z) - Topological Uncertainty: Monitoring trained neural networks through
persistence of activation graphs [0.9786690381850356]
産業アプリケーションでは、オープンワールド設定から得られるデータは、ネットワークがトレーニングされたベンチマークデータセットと大きく異なる可能性がある。
活性化グラフのトポロジ的特性に基づいて訓練されたニューラルネットワークを監視する手法を開発している。
論文 参考訳(メタデータ) (2021-05-07T14:16:03Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
本稿では,深層予測モデルを用いて構造化ネットワーク上での転送挙動を捕捉するネットワーク埋め込みフレームワークを提案する。
ネットワーク構造埋め込み層は、Long Short-Term Memory NetworkやRecurrent Neural Networkなど、従来の深部予測モデルに付加される。
ソーシャルネットワーク, 引用ネットワーク, バイオメディカルネットワーク, 協調ネットワーク, 言語ネットワークなど, さまざまなデータセットについて実験を行った。
論文 参考訳(メタデータ) (2021-04-27T16:56:00Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。