Physical Informed Neural Networks for modeling ocean pollutant
- URL: http://arxiv.org/abs/2507.08834v1
- Date: Mon, 07 Jul 2025 04:21:09 GMT
- Title: Physical Informed Neural Networks for modeling ocean pollutant
- Authors: Karishma Battina, Prathamesh Dinesh Joshi, Raj Abhijit Dandekar, Rajat Dandekar, Sreedath Panat,
- Abstract summary: This paper introduces a framework to simulate the dispersion of pollutants governed by the 2D advection-diffusion equation.<n>The model achieves physically consistent predictions by embedding physical laws and fitting to noisy synthetic data.
- Score: 1.393499936476792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional numerical methods often struggle with the complexity and scale of modeling pollutant transport across vast and dynamic oceanic domains. This paper introduces a Physics-Informed Neural Network (PINN) framework to simulate the dispersion of pollutants governed by the 2D advection-diffusion equation. The model achieves physically consistent predictions by embedding physical laws and fitting to noisy synthetic data, generated via a finite difference method (FDM), directly into the neural network training process. This approach addresses challenges such as non-linear dynamics and the enforcement of boundary and initial conditions. Synthetic data sets, augmented with varying noise levels, are used to capture real-world variability. The training incorporates a hybrid loss function including PDE residuals, boundary/initial condition conformity, and a weighted data fit term. The approach takes advantage of the Julia language scientific computing ecosystem for high-performance simulations, offering a scalable and flexible alternative to traditional solvers
Related papers
- Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport [48.06072022424773]
Many real-world systems are described only approximately with missing or unknown terms in the equations.<n>This makes the distribution of the physics model differ from the true data-generating process (DGP)<n>We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models.
arXiv Detail & Related papers (2025-06-27T13:23:27Z) - KITINet: Kinetics Theory Inspired Network Architectures with PDE Simulation Approaches [43.872190335490515]
This paper introduces KITINet, a novel architecture that reinterprets feature propagation through the lens of non-equilibrium particle dynamics.<n>At its core, we propose a residual module that models update as the evolution of a particle system.<n>This formulation mimics particle collisions and energy exchange, enabling adaptive feature refinement via physics-informed interactions.
arXiv Detail & Related papers (2025-05-23T13:58:29Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
This paper introduces KO, a novel neural gradient inspired by kinetic theory and partial differential equation (PDE) simulations.<n>We reimagine the dynamics of network parameters as the evolution of a particle system governed by kinetic principles.<n>This physics-driven approach inherently promotes parameter diversity during optimization, mitigating the phenomenon of parameter condensation.
arXiv Detail & Related papers (2025-05-20T18:00:01Z) - Spatiotemporal Field Generation Based on Hybrid Mamba-Transformer with Physics-informed Fine-tuning [46.67399627400437]
This research confronts the challenge of substantial physical equation discrepancies in the generation of physical fields through trained models.<n>A physical field generation model, named HMT-PF, is developed based on the hybrid Mamba-Transformer architecture.
arXiv Detail & Related papers (2025-05-16T14:40:56Z) - Enhanced Vascular Flow Simulations in Aortic Aneurysm via Physics-Informed Neural Networks and Deep Operator Networks [0.0]
PINNs, Deep Operator Networks (DeepONets), and their Physics-Informed extensions (PI-DeepONets) are studied.<n>We adapt the approaches to address the particular use case of AAA by integrating the 3D Navier-Stokes equations.<n> advantages and limitations of each approach are highlighted through a series of relevant application cases.
arXiv Detail & Related papers (2025-03-19T22:38:52Z) - Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
Physics Informed Machine Learning has emerged as a popular approach for modeling and simulation in digital twins.<n>This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.<n>Our method integrates differentiable physics blocks-implementing mathematical operators from physics-based models with feed-forward learning blocks.
arXiv Detail & Related papers (2024-11-18T11:58:20Z) - Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials [43.99845081513279]
This work introduces a novel Differentiable Physics-based System Identification (DPSI) framework that enables a robot arm to infer the physics parameters of elastoplastic materials and the environment using simple manipulation motions and incomplete 3D point clouds.<n>With only a single real-world interaction, the estimated parameters can accurately simulate visually and physically realistic behaviours induced by unseen and long-horizon manipulation motions.
arXiv Detail & Related papers (2024-11-01T13:04:25Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
We show how we can approximate missing ordinary differential equations with known ODEs using a neural network approximation.
Results indicate that this RBSE approach to training the NN parameters yields better outcomes (measurement/state estimation accuracy) than training the neural network with backpropagation.
arXiv Detail & Related papers (2021-10-12T15:38:13Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.