A Multi-Level Strategy for Deepfake Content Moderation under EU Regulation
- URL: http://arxiv.org/abs/2507.08879v1
- Date: Thu, 10 Jul 2025 08:08:42 GMT
- Title: A Multi-Level Strategy for Deepfake Content Moderation under EU Regulation
- Authors: Max-Paul Förster, Luca Deck, Raimund Weidlich, Niklas Kühl,
- Abstract summary: The EU has responded with transparency obligations for providers and deployers of AI systems and online platforms.<n>This includes marking deepfakes during generation and labeling deepfakes when they are shared.<n>The lack of industry and enforcement standards poses an ongoing challenge.
- Score: 1.6124402884077915
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing availability and use of deepfake technologies increases risks for democratic societies, e.g., for political communication on online platforms. The EU has responded with transparency obligations for providers and deployers of Artificial Intelligence (AI) systems and online platforms. This includes marking deepfakes during generation and labeling deepfakes when they are shared. However, the lack of industry and enforcement standards poses an ongoing challenge. Through a multivocal literature review, we summarize methods for marking, detecting, and labeling deepfakes and assess their effectiveness under EU regulation. Our results indicate that individual methods fail to meet regulatory and practical requirements. Therefore, we propose a multi-level strategy combining the strengths of existing methods. To account for the masses of content on online platforms, our multi-level strategy provides scalability and practicality via a simple scoring mechanism. At the same time, it is agnostic to types of deepfake technology and allows for context-specific risk weighting.
Related papers
- METER: Multi-modal Evidence-based Thinking and Explainable Reasoning -- Algorithm and Benchmark [48.78602579128459]
We introduce METER, a unified benchmark for interpretable forgery detection spanning images, videos, audio, and audio-visual content.<n>Our dataset comprises four tracks, each requiring not only real-vs-fake classification but also evidence-chain-based explanations.
arXiv Detail & Related papers (2025-07-22T03:42:51Z) - SocialDF: Benchmark Dataset and Detection Model for Mitigating Harmful Deepfake Content on Social Media Platforms [0.13194391758295113]
We introduce SocialDF, a curated dataset reflecting real-world deepfake challenges on social media platforms.<n>This dataset encompasses high-fidelity deepfakes sourced from various online ecosystems.<n>We propose a novel multi-factor detection approach that combines facial recognition, automated speech transcription, and a multi-agent LLM pipeline.
arXiv Detail & Related papers (2025-06-05T19:39:28Z) - Mapping the Regulatory Learning Space for the EU AI Act [0.8987776881291145]
The EU AI Act represents the world's first transnational AI regulation with concrete enforcement measures.<n>It builds on existing EU mechanisms for regulating health and safety of products but extends them to protect fundamental rights.<n>We argue that this will lead to multiple uncertainties in the enforcement of the AI Act.
arXiv Detail & Related papers (2025-02-27T12:46:30Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability.<n>The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories.
arXiv Detail & Related papers (2025-02-19T05:58:52Z) - The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data [50.544186914115045]
TEDUO is a novel training pipeline for offline language-conditioned policy learning in symbolic environments.<n>Our approach harnesses large language models (LLMs) in a dual capacity: first, as automatization tools augmenting offline datasets with richer annotations, and second, as generalizable instruction-following agents.
arXiv Detail & Related papers (2024-12-09T18:43:56Z) - Can We Trust AI Agents? A Case Study of an LLM-Based Multi-Agent System for Ethical AI [10.084913433923566]
AI-based systems impact millions by supporting diverse tasks but face issues like misinformation, bias, and misuse.<n>This study examines the use of Large Language Models (LLM) for AI ethics in practice.<n>We design a prototype, where agents engage in structured discussions on real-world AI ethics issues from the AI Incident Database.
arXiv Detail & Related papers (2024-10-25T20:17:59Z) - Dynamic Analysis and Adaptive Discriminator for Fake News Detection [59.41431561403343]
We propose a Dynamic Analysis and Adaptive Discriminator (DAAD) approach for fake news detection.<n>For knowledge-based methods, we introduce the Monte Carlo Tree Search algorithm to leverage the self-reflective capabilities of large language models.<n>For semantic-based methods, we define four typical deceit patterns to reveal the mechanisms behind fake news creation.
arXiv Detail & Related papers (2024-08-20T14:13:54Z) - Examining the Implications of Deepfakes for Election Integrity [9.129491613898962]
It is becoming cheaper to launch disinformation operations at scale using AI-generated content, in particular 'deepfake' technology.
We discuss the threats from deepfakes in politics, highlight model specifications underlying different types of deepfake generation methods, and contribute an accessible evaluation of the efficacy of existing detection methods.
We highlight the limitations of existing detection mechanisms and discuss the areas where policies and regulations are required to address the challenges of deepfakes.
arXiv Detail & Related papers (2024-06-20T13:15:54Z) - PolyGlotFake: A Novel Multilingual and Multimodal DeepFake Dataset [7.952304417617302]
multimodal deepfakes, which manipulate both audio and visual modalities, have drawn increasing public concern.
To address this gap, we propose a novel, multilingual, and multimodal deepfake dataset: PolyGlotFake.
It includes content in seven languages, created using a variety of cutting-edge and popular Text-to-Speech, voice cloning, and lip-sync technologies.
arXiv Detail & Related papers (2024-05-14T06:40:05Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Benchmarks for Deep Off-Policy Evaluation [152.28569758144022]
We present a collection of policies that can be used for benchmarking off-policy evaluation.
The goal of our benchmark is to provide a standardized measure of progress that is motivated from a set of principles.
We provide open-source access to our data and code to foster future research in this area.
arXiv Detail & Related papers (2021-03-30T18:09:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.