Mapping the Regulatory Learning Space for the EU AI Act
- URL: http://arxiv.org/abs/2503.05787v2
- Date: Wed, 28 May 2025 09:27:18 GMT
- Title: Mapping the Regulatory Learning Space for the EU AI Act
- Authors: Dave Lewis, Marta Lasek-Markey, Delaram Golpayegani, Harshvardhan J. Pandit,
- Abstract summary: The EU AI Act represents the world's first transnational AI regulation with concrete enforcement measures.<n>It builds on existing EU mechanisms for regulating health and safety of products but extends them to protect fundamental rights.<n>We argue that this will lead to multiple uncertainties in the enforcement of the AI Act.
- Score: 0.8987776881291145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The EU AI Act represents the world's first transnational AI regulation with concrete enforcement measures. It builds on existing EU mechanisms for regulating health and safety of products but extends them to protect fundamental rights and to address AI as a horizontal technology across multiple application sectors. We argue that this will lead to multiple uncertainties in the enforcement of the AI Act, which coupled with the fast-changing nature of AI technology, will require a strong emphasis on comprehensive and rapid regulatory learning for the Act. We define a parametrised regulatory learning space based on the provisions of the Act and describe a layered system of different learning arenas where the population of oversight authorities, value chain participants, and affected stakeholders may interact to apply and learn from technical, organisational and legal implementation measures. We conclude by exploring how existing open data policies and practices in the EU can be adapted to support rapid and effective regulatory learning.
Related papers
- Comparing Apples to Oranges: A Taxonomy for Navigating the Global Landscape of AI Regulation [0.0]
We present a taxonomy to map the global landscape of AI regulation.<n>We apply this framework to five early movers: the European Union's AI Act, the United States' Executive Order 14110, Canada's AI and Data Act, China's Interim Measures for Generative AI Services, and Brazil's AI Bill 2338/2023.
arXiv Detail & Related papers (2025-05-19T19:23:41Z) - HH4AI: A methodological Framework for AI Human Rights impact assessment under the EUAI ACT [1.7754875105502606]
The paper highlights AIs transformative nature, driven by autonomy, data, and goal-oriented design.
A key challenge is defining and assessing "high-risk" AI systems across industries.
It proposes a Fundamental Rights Impact Assessment (FRIA) methodology, a gate-based framework designed to isolate and assess risks.
arXiv Detail & Related papers (2025-03-23T19:10:14Z) - Regulating Ai In Financial Services: Legal Frameworks And Compliance Challenges [0.0]
Article examines the evolving landscape of artificial intelligence (AI) regulation in financial services.
It highlights how AI-driven processes, from fraud detection to algorithmic trading, offer efficiency gains yet introduce significant risks.
The study compares regulatory approaches across major jurisdictions such as the European Union, United States, and United Kingdom.
arXiv Detail & Related papers (2025-03-17T14:29:09Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Compliance of AI Systems [0.0]
This paper systematically examines the compliance of AI systems with relevant legislation, focusing on the EU's AI Act.<n>The analysis highlighted many challenges associated with edge devices, which are increasingly being used to deploy AI applications closer and closer to the data sources.<n>The importance of data set compliance is highlighted as a cornerstone for ensuring the trustworthiness, transparency, and explainability of AI systems.
arXiv Detail & Related papers (2025-03-07T16:53:36Z) - Between Innovation and Oversight: A Cross-Regional Study of AI Risk Management Frameworks in the EU, U.S., UK, and China [0.0]
This paper conducts a comparative analysis of AI risk management strategies across the European Union, United States, United Kingdom (UK), and China.
The findings show that the EU implements a structured, risk-based framework that prioritizes transparency and conformity assessments.
The U.S. uses a decentralized, sector-specific regulations that promote innovation but may lead to fragmented enforcement.
arXiv Detail & Related papers (2025-02-25T18:52:17Z) - Beyond Benchmarks: On The False Promise of AI Regulation [13.125853211532196]
We show that effective scientific regulation requires a causal theory linking observable test outcomes to future performance.<n>We show that deep learning models, which learn complex statistical patterns from training data without explicit causal mechanisms, preclude such guarantees.
arXiv Detail & Related papers (2025-01-26T22:43:07Z) - The Fundamental Rights Impact Assessment (FRIA) in the AI Act: Roots, legal obligations and key elements for a model template [55.2480439325792]
Article aims to fill existing gaps in the theoretical and methodological elaboration of the Fundamental Rights Impact Assessment (FRIA)<n>This article outlines the main building blocks of a model template for the FRIA.<n>It can serve as a blueprint for other national and international regulatory initiatives to ensure that AI is fully consistent with human rights.
arXiv Detail & Related papers (2024-11-07T11:55:55Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - The Artificial Intelligence Act: critical overview [0.0]
This article provides a critical overview of the recently approved Artificial Intelligence Act.
It starts by presenting the main structure, objectives, and approach of Regulation (EU) 2024/1689.
The text concludes that even if the overall framework can be deemed adequate and balanced, the approach is so complex that it risks defeating its own purpose.
arXiv Detail & Related papers (2024-08-30T21:38:02Z) - Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety.
A workshop co-organized by Google, University of Wisconsin, Madison, and Stanford University aimed to bridge this gap between GenAI policy and technology.
This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress?
arXiv Detail & Related papers (2024-05-21T20:30:01Z) - Navigating the EU AI Act: A Methodological Approach to Compliance for Safety-critical Products [0.0]
This paper presents a methodology for interpreting the EU AI Act requirements for high-risk AI systems.
We first propose an extended product quality model for AI systems, incorporating attributes relevant to the Act not covered by current quality models.
We then propose a contract-based approach to derive technical requirements at the stakeholder level.
arXiv Detail & Related papers (2024-03-25T14:32:18Z) - Large Language Models and Explainable Law: a Hybrid Methodology [44.99833362998488]
The paper advocates for LLMs to enhance the accessibility, usage and explainability of rule-based legal systems.
A methodology is developed to explore the potential use of LLMs for translating the explanations produced by rule-based systems.
arXiv Detail & Related papers (2023-11-20T14:47:20Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - AI Regulation in Europe: From the AI Act to Future Regulatory Challenges [3.0821115746307663]
It argues for a hybrid regulatory strategy that combines elements from both philosophies.
The paper examines the AI Act as a pioneering legislative effort to address the multifaceted challenges posed by AI.
It advocates for immediate action to create protocols for regulated access to high-performance, potentially open-source AI systems.
arXiv Detail & Related papers (2023-10-06T07:52:56Z) - Quantitative study about the estimated impact of the AI Act [0.0]
We suggest a systematic approach that we applied on the initial draft of the AI Act that has been released in April 2021.
We went through several iterations of compiling the list of AI products and projects in and from Germany, which the Lernende Systeme platform lists.
It turns out that only about 30% of the AI systems considered would be regulated by the AI Act, the rest would be classified as low-risk.
arXiv Detail & Related papers (2023-03-29T06:23:16Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.