論文の概要: PRISM: Reducing Spurious Implicit Biases in Vision-Language Models with LLM-Guided Embedding Projection
- arxiv url: http://arxiv.org/abs/2507.08979v1
- Date: Fri, 11 Jul 2025 19:24:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.056973
- Title: PRISM: Reducing Spurious Implicit Biases in Vision-Language Models with LLM-Guided Embedding Projection
- Title(参考訳): PRISM:LLM誘導埋め込み射影を用いた視覚言語モデルにおけるスプリアスインシシデントビアーゼの低減
- Authors: Mahdiyar Molahasani, Azadeh Motamedi, Michael Greenspan, Il-Min Kim, Ali Etemad,
- Abstract要約: 視覚言語モデル(PRISM)における暗黙バイアスのプロジェクションに基づく削減について紹介する。
PRISMは、視覚言語モデルにおけるバイアス軽減のための、データフリーでタスクに依存しない新しいソリューションである。
- 参考スコア(独自算出の注目度): 21.96645957850079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Projection-based Reduction of Implicit Spurious bias in vision-language Models (PRISM), a new data-free and task-agnostic solution for bias mitigation in VLMs like CLIP. VLMs often inherit and amplify biases in their training data, leading to skewed predictions. PRISM is designed to debias VLMs without relying on predefined bias categories or additional external data. It operates in two stages: first, an LLM is prompted with simple class prompts to generate scene descriptions that contain spurious correlations. Next, PRISM uses our novel contrastive-style debiasing loss to learn a projection that maps the embeddings onto a latent space that minimizes spurious correlations while preserving the alignment between image and text embeddings.Extensive experiments demonstrate that PRISM outperforms current debiasing methods on the commonly used Waterbirds and CelebA datasets We make our code public at: https://github.com/MahdiyarMM/PRISM.
- Abstract(参考訳): 視覚言語モデル(PRISM)では,CLIPのようなVLMにおけるバイアス軽減のための新しいデータフリーでタスク非依存のソリューションであるインプリシト・スパージャバイアスの削減が提案されている。
VLMはトレーニングデータのバイアスを継承して増幅することが多く、歪んだ予測につながります。
PRISMは、事前に定義されたバイアスカテゴリや追加の外部データに頼ることなく、VLMをデバイアスするように設計されている。
まず、LLMは単純なクラスプロンプトでトリガーされ、素早い相関を含むシーン記述を生成する。
次に、PRISMは、我々の新しいコントラストスタイルのデバイアス化損失を使用して、画像とテキストの埋め込みのアライメントを保ちながら、スプリケートな相関を最小化する潜在空間に埋め込みをマッピングするプロジェクションを学習します。そして、PRISMは、一般的に使われているWaterbirdsとCelebAデータセットの現在のデバイアス化メソッドより優れていることを実証します。
関連論文リスト
- DIF: A Framework for Benchmarking and Verifying Implicit Bias in LLMs [1.89915151018241]
我々は、Large Language Models(LLMs)における暗黙のバイアスは倫理的な問題であるだけでなく、技術的な問題でもあると主張している。
我々は、容易に解釈可能なベンチマークDIF(Demographic Implicit Fairness)の計算方法を開発した。
論文 参考訳(メタデータ) (2025-05-15T06:53:37Z) - Implicit Bias in LLMs: A Survey [2.07180164747172]
本稿では,大規模言語モデルにおける暗黙バイアスに関する既存の文献を包括的にレビューする。
まず、心理学における暗黙の偏見に関連する重要な概念、理論、方法を紹介する。
検出方法は,単語関連,タスク指向テキスト生成,意思決定の3つの主要なアプローチに分類する。
論文 参考訳(メタデータ) (2025-03-04T16:49:37Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
審査員としてのLLM(Large Language Models)とLLMに基づくデータ合成は、2つの基本的なLLM駆動型データアノテーション法として登場した。
本研究では, 合成データ生成器とLCMに基づく評価器の関連性に起因するLCM-as-a-judgeの汚染問題である選好リークを明らかにする。
論文 参考訳(メタデータ) (2025-02-03T17:13:03Z) - Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
本稿では,大規模言語モデルとプライベートデータセットの整合性に関する最初の研究について述べる。
本研究は,プライバシ保証付きアクティベーションを編集するPSA(Private Steering for LLM Alignment)アルゴリズムを提案する。
以上の結果から,PSAはLPMアライメントのDP保証を実現し,性能の低下を最小限に抑えることができた。
論文 参考訳(メタデータ) (2025-01-30T17:58:36Z) - RAZOR: Sharpening Knowledge by Cutting Bias with Unsupervised Text Rewriting [16.633948320306832]
手動で構築されたデータセットで一般的なバイアスは、トークンとラベルの間に急激な相関をもたらす可能性がある。
既存のデバイアス法は、しばしば特定のデータセットバイアスに関する事前の知識に依存している。
本稿では,ショートカット緩和のためのテキスト書き直しに基づく,新規で教師なし,データ重視のデバイアス処理手法であるRAZORを提案する。
論文 参考訳(メタデータ) (2024-12-10T17:02:58Z) - BendVLM: Test-Time Debiasing of Vision-Language Embeddings [31.033058277888234]
視覚言語モデル(VLM)埋め込みは、トレーニングデータに存在するバイアスを符号化する。
VLMを微調整するデバイアスングアプローチは、しばしば破滅的な忘れ物に悩まされる。
本稿では,VLM埋込脱バイアスに対する非線形,微調整不要なアプローチであるBend-VLMを提案する。
論文 参考訳(メタデータ) (2024-11-07T04:16:15Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Refining Skewed Perceptions in Vision-Language Contrastive Models through Visual Representations [0.033483662989441935]
大規模視覚言語コントラストモデル(VLCM)は、様々な下流タスクで顕著な成功を収めている。
それらの利点にもかかわらず、これらのモデルは現実のデータの不均等な分布からバイアスを受け継ぎ、実際の環境に関する誤解を招く。
本研究では,CLIPの下流アプリケーションへの埋め込みから,単純な線形プローブを用いてタスク固有のコア特徴を効果的に抽出する方法について検討する。
論文 参考訳(メタデータ) (2024-05-22T22:03:11Z) - Prompting Fairness: Integrating Causality to Debias Large Language Models [19.76215433424235]
大規模言語モデル(LLM)は偏見や差別的な反応を生じさせる可能性がある。
社会的偏見に対処するための因果性誘導型脱バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-13T17:46:28Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - Self-Supervised Position Debiasing for Large Language Models [39.261233221850155]
大規模言語モデル(LLM)における位置バイアスを軽減するための自己教師型位置偏差検出(SOD)フレームワークを提案する。
8つのデータセットと5つのタスクの実験により、SODは3つのタイプの位置バイアスを緩和する既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-01-02T14:12:41Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。