論文の概要: From images to properties: a NeRF-driven framework for granular material parameter inversion
- arxiv url: http://arxiv.org/abs/2507.09005v1
- Date: Fri, 11 Jul 2025 20:15:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.07109
- Title: From images to properties: a NeRF-driven framework for granular material parameter inversion
- Title(参考訳): 画像から特性へ:粒度パラメータインバージョンのためのNeRF駆動フレームワーク
- Authors: Cheng-Hsi Hsiao, Krishna Kumar,
- Abstract要約: 本稿では,ニューラルラジアンス場(NeRF)と物質点法(MPM)のシミュレーションを統合し,視覚的観察から物質特性を推定する新しいフレームワークを提案する。
その結果, 摩擦角は2度以内の誤差で推定できることが示され, 純粋視覚観察による逆解析の有効性が示された。
- 参考スコア(独自算出の注目度): 1.8231854497751137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework that integrates Neural Radiance Fields (NeRF) with Material Point Method (MPM) simulation to infer granular material properties from visual observations. Our approach begins by generating synthetic experimental data, simulating an plow interacting with sand. The experiment is rendered into realistic images as the photographic observations. These observations include multi-view images of the experiment's initial state and time-sequenced images from two fixed cameras. Using NeRF, we reconstruct the 3D geometry from the initial multi-view images, leveraging its capability to synthesize novel viewpoints and capture intricate surface details. The reconstructed geometry is then used to initialize material point positions for the MPM simulation, where the friction angle remains unknown. We render images of the simulation under the same camera setup and compare them to the observed images. By employing Bayesian optimization, we minimize the image loss to estimate the best-fitting friction angle. Our results demonstrate that friction angle can be estimated with an error within 2 degrees, highlighting the effectiveness of inverse analysis through purely visual observations. This approach offers a promising solution for characterizing granular materials in real-world scenarios where direct measurement is impractical or impossible.
- Abstract(参考訳): 本稿では,ニューラルラジアンス場(NeRF)と物質点法(MPM)のシミュレーションを統合し,視覚的観察から物質特性を推定する新しいフレームワークを提案する。
我々のアプローチは、砂と相互作用するプラウをシミュレートして合成実験データを生成することから始まります。
実験は写真観察としてリアルなイメージに変換される。
これらの観察には、実験の初期状態のマルチビュー画像と、2つの固定カメラからの時系列画像が含まれる。
NeRFを用いて初期多視点画像から3次元形状を再構成し、新しい視点を合成し、複雑な表面の詳細を捉える能力を活用する。
再構成された幾何学は、MPMシミュレーションの材料点位置を初期化するために使用され、そこでは摩擦角が不明である。
我々は、同じカメラ設定でシミュレーションの画像を描画し、観察された画像と比較する。
ベイズ最適化を用いることで、画像損失を最小限に抑え、最適な摩擦角を推定する。
その結果, 摩擦角は2度以内の誤差で推定できることが示され, 純粋視覚観察による逆解析の有効性が示された。
このアプローチは、直接測定が非現実的または不可能な実世界のシナリオにおいて、粒状物質を特徴づけるための有望なソリューションを提供する。
関連論文リスト
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
本稿では、物理シミュレーションを利用した新しいフレームワークであるPhysMotionを紹介し、一つの画像と入力条件から生成された中間3次元表現をガイドする。
我々のアプローチは、従来のデータ駆動生成モデルの限界に対処し、より一貫した物理的に妥当な動きをもたらす。
論文 参考訳(メタデータ) (2024-11-26T07:59:11Z) - Efficient Physics Simulation for 3D Scenes via MLLM-Guided Gaussian Splatting [32.846428862045634]
Sim Anythingは、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える物理ベースのアプローチである。
人間の視覚的推論に触発されて,MLLMに基づく物理特性知覚を提案する。
また、物理幾何学的適応サンプリングを用いて粒子をサンプリングして、オープンワールドシーンでオブジェクトをシミュレートする。
論文 参考訳(メタデータ) (2024-11-19T12:52:21Z) - Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation [0.0]
逆レンダリングは、光、幾何学、テクスチャ、材料を含むシーンの物理的特性を導き出そうとする。
メッシュは、多くのシミュレーションパイプラインで採用されている伝統的な表現として、いまだに逆レンダリングのラディアンスフィールドに限られた影響しか示していない。
本稿では,これらのパラメータを包括的に近似するメッシュベースの表現であるTriangle Patchlet (abbr. Triplet) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T09:59:11Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos [8.012771454339353]
本稿では,RGB-D画像から剛体物体を3次元追跡し,物体の物理的特性を推定する手法を提案する。
実世界のデータセット上で、我々のアプローチを実証し、評価する。
論文 参考訳(メタデータ) (2023-09-27T14:46:01Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) 法では、単一の単眼RGBカメラから3次元表面の変形を推定する。
本稿では,物理シミュレーションによる2次元観察を解説する新しいSfT手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T17:59:57Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
ニューラルレイディアンス場(NeRF)に基づく1枚の360度RGB-D画像から新しいビューを合成する方法を提案する。
実験により,提案手法は実世界と実世界の両方でシーンの特徴を保ちながら,可塑性な新規なビューを合成できることが実証された。
論文 参考訳(メタデータ) (2022-03-18T13:49:25Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Sim2Air - Synthetic aerial dataset for UAV monitoring [2.1638817206926855]
テクスチャランダム化を適用し,形状に基づくオブジェクト表現のアクセント化を提案する。
すべてのパラメータでフォトリアリズムを持つ多様なデータセットは、3DモデリングソフトウェアであるBlenderで作成される。
論文 参考訳(メタデータ) (2021-10-11T10:36:33Z) - Visual Vibration Tomography: Estimating Interior Material Properties
from Monocular Video [66.94502090429806]
物体の内部の物質特性は、人間の目には見えないが、表面で観察される動きを決定する。
本研究では,物体の表面振動の単分子ビデオから物体の異種材料特性を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-04-06T18:05:27Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
深層畳み込みニューラルネットワークは、画像の劣化の最先端技術である。
本稿では,自己監督型動作遅延に対する識別可能なreblurモデルを提案する。
我々の実験は、自己監督された単一画像の劣化が本当に実現可能であることを実証した。
論文 参考訳(メタデータ) (2020-02-10T20:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。