論文の概要: From Classical Machine Learning to Emerging Foundation Models: Review on Multimodal Data Integration for Cancer Research
- arxiv url: http://arxiv.org/abs/2507.09028v1
- Date: Fri, 11 Jul 2025 21:23:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.15994
- Title: From Classical Machine Learning to Emerging Foundation Models: Review on Multimodal Data Integration for Cancer Research
- Title(参考訳): 古典的機械学習から創発的基礎モデルへ:がん研究におけるマルチモーダルデータ統合の展望
- Authors: Amgad Muneer, Muhammad Waqas, Maliazurina B Saad, Eman Showkatian, Rukhmini Bandyopadhyay, Hui Xu, Wentao Li, Joe Y Chang, Zhongxing Liao, Cara Haymaker, Luisa Solis Soto, Carol C Wu, Natalie I Vokes, Xiuning Le, Lauren A Byers, Don L Gibbons, John V Heymach, Jianjun Zhang, Jia Wu,
- Abstract要約: ファンデーションモデル(FM)は、バイオマーカーを発見し、診断を改善し、治療をパーソナライズするための新しい道を提供する。
機械学習(ML)とディープラーニング(DL)の新興動向について検討する。
我々は、最先端のFM、公開されているマルチモーダルリポジトリ、データ統合のための高度なツールとメソッドを識別する。
- 参考スコア(独自算出の注目度): 17.42746456656653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer research is increasingly driven by the integration of diverse data modalities, spanning from genomics and proteomics to imaging and clinical factors. However, extracting actionable insights from these vast and heterogeneous datasets remains a key challenge. The rise of foundation models (FMs) -- large deep-learning models pretrained on extensive amounts of data serving as a backbone for a wide range of downstream tasks -- offers new avenues for discovering biomarkers, improving diagnosis, and personalizing treatment. This paper presents a comprehensive review of widely adopted integration strategies of multimodal data to assist advance the computational approaches for data-driven discoveries in oncology. We examine emerging trends in machine learning (ML) and deep learning (DL), including methodological frameworks, validation protocols, and open-source resources targeting cancer subtype classification, biomarker discovery, treatment guidance, and outcome prediction. This study also comprehensively covers the shift from traditional ML to FMs for multimodal integration. We present a holistic view of recent FMs advancements and challenges faced during the integration of multi-omics with advanced imaging data. We identify the state-of-the-art FMs, publicly available multi-modal repositories, and advanced tools and methods for data integration. We argue that current state-of-the-art integrative methods provide the essential groundwork for developing the next generation of large-scale, pre-trained models poised to further revolutionize oncology. To the best of our knowledge, this is the first review to systematically map the transition from conventional ML to advanced FM for multimodal data integration in oncology, while also framing these developments as foundational for the forthcoming era of large-scale AI models in cancer research.
- Abstract(参考訳): がんの研究は、ゲノム学やプロテオミクスから画像や臨床的要因まで、多様なデータモダリティの統合によってますます推進されている。
しかし、これらの巨大で異質なデータセットから実行可能な洞察を抽出することは、依然として重要な課題である。
幅広い下流タスクのバックボーンとして機能する膨大なデータに基づいて事前訓練された大規模なディープラーニングモデル(FM)の台頭は、バイオマーカーの発見、診断の改善、治療のパーソナライズのための新たな道を提供する。
本稿では、腫瘍学におけるデータ駆動発見のための計算手法の進歩を支援するため、マルチモーダルデータの広く採用されている統合戦略を包括的にレビューする。
本稿では, がんサブタイプ分類, バイオマーカー発見, 治療指導, 予後予測を対象とする方法論的フレームワーク, 検証プロトコル, オープンソースリソースを含む, 機械学習(ML) とディープラーニング(DL)の新興動向について検討する。
この研究は、マルチモーダル統合のための従来のMLからFMへの移行についても包括的に取り上げている。
本稿では、最近のFMの進歩と、マルチオミクスと高度な画像データの統合において直面する課題について概観する。
我々は、最先端のFM、公開されているマルチモーダルリポジトリ、データ統合のための高度なツールとメソッドを識別する。
我々は、現在の最先端の積分法が、腫瘍学にさらなる革命をもたらすために、次世代の大規模、事前訓練されたモデルを開発する上で不可欠な基礎となることを論じる。
我々の知る限りでは、腫瘍学におけるマルチモーダルデータ統合のための従来のMLから高度なFMへの移行を体系的にマッピングする最初のレビューであり、また、がん研究における大規模AIモデルの時代への基盤として、これらの発展を浮き彫りにする。
関連論文リスト
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDCは、マルチモーダルな生物学的AIモデルのための合理化されたトレーニング、評価、推論ソフトウェアを提供する機械学習プラットフォームである。
本稿では、PyTDCのアーキテクチャの構成要素と、我々の知る限り、導入したシングルセルドラッグターゲットMLタスクにおける第一種ケーススタディについて論じる。
論文 参考訳(メタデータ) (2025-05-08T18:15:38Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - A Systematic Review of Intermediate Fusion in Multimodal Deep Learning for Biomedical Applications [0.7831774233149619]
本研究は,生物医学的応用における現在の中間核融合法の解析と形式化を目的としている。
バイオメディカルドメインを超えて,これらの手法の理解と応用を高めるための構造的表記法を導入する。
我々の発見は、より高度で洞察に富んだマルチモーダルモデルの開発において、研究者、医療専門家、そしてより広範なディープラーニングコミュニティを支援することを目的としています。
論文 参考訳(メタデータ) (2024-08-02T11:48:04Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
マルチモダリティ基盤モデルのためのオープンソースプラットフォームであるOpenMEDLabについて紹介する。
これは、最前線臨床および生体情報学応用のための大規模言語とビジョンモデルを刺激し、微調整する先駆的な試みの解決策をカプセル化する。
様々な医用画像のモダリティ、臨床テキスト、タンパク質工学など、事前訓練された基礎モデル群へのアクセスが可能である。
論文 参考訳(メタデータ) (2024-02-28T03:51:02Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
基礎モデル(FM)は、特に深層学習の領域において、計算生物学の新しい時代に定着した。
我々の焦点は、特定の生物学的問題にFMを応用することであり、研究ニーズに適切なFMを選択するために研究コミュニティを指導することを目的としています。
データノイズ、モデル説明可能性、潜在的なバイアスなど、生物学においてFMが直面する課題と限界を分析します。
論文 参考訳(メタデータ) (2024-02-06T02:29:17Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
本研究は、オンコロジーデータシステム(MINDS)のマルチモーダル統合を提案する。
MINDSはフレキシブルでスケーラブルで費用対効果の高いメタデータフレームワークで、公開ソースから異なるデータを効率的に分離する。
MINDSは、マルチモーダルデータを調和させることで、より分析能力の高い研究者を力づけることを目指している。
論文 参考訳(メタデータ) (2023-09-30T15:44:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。