論文の概要: Queue up for takeoff: a transferable deep learning framework for flight delay prediction
- arxiv url: http://arxiv.org/abs/2507.09084v1
- Date: Sat, 12 Jul 2025 00:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.280749
- Title: Queue up for takeoff: a transferable deep learning framework for flight delay prediction
- Title(参考訳): 離陸待ち:飛行遅延予測のための伝達可能なディープラーニングフレームワーク
- Authors: Nnamdi Daniel Aghanya, Ta Duong Vu, Amaëlle Diop, Charlotte Deville, Nour Imane Kerroumi, Irene Moulitsas, Jun Li, Desmond Bisandu,
- Abstract要約: 本稿では、キュー理論と簡単な注意モデルを組み合わせた新しいアプローチを紹介し、キュー理論SimAM(QT-SimAM)と呼ぶ。
提案モデルでは,異なるネットワーク間の遅延を高精度に予測する能力により,乗客の不安を軽減し,運用上の意思決定を改善することができる。
- 参考スコア(独自算出の注目度): 2.1999538908344283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flight delays are a significant challenge in the aviation industry, causing major financial and operational disruptions. To improve passenger experience and reduce revenue loss, flight delay prediction models must be both precise and generalizable across different networks. This paper introduces a novel approach that combines Queue-Theory with a simple attention model, referred to as the Queue-Theory SimAM (QT-SimAM). To validate our model, we used data from the US Bureau of Transportation Statistics, where our proposed QT-SimAM (Bidirectional) model outperformed existing methods with an accuracy of 0.927 and an F1 score of 0.932. To assess transferability, we tested the model on the EUROCONTROL dataset. The results demonstrated strong performance, achieving an accuracy of 0.826 and an F1 score of 0.791. Ultimately, this paper outlines an effective, end-to-end methodology for predicting flight delays. The proposed model's ability to forecast delays with high accuracy across different networks can help reduce passenger anxiety and improve operational decision-making
- Abstract(参考訳): 飛行遅延は航空業界において重要な課題であり、金融と運用の大きな混乱を引き起こしている。
乗客の体験を改善し、収益損失を減らすために、フライト遅延予測モデルは、異なるネットワークで正確かつ一般化可能でなければならない。
本稿では、キュー理論と、キュー理論シムム(QT-SimAM)と呼ばれる単純な注意モデルを組み合わせた新しいアプローチを提案する。
そこで提案したQT-SimAM(双方向)モデルは既存の手法よりも精度0.927,F1スコア0.932で優れていた。
転送可能性を評価するため、EUROCONTROLデータセット上でモデルを検証した。
結果は高い性能を示し、精度は0.826、F1スコアは0.791となった。
最終的に、本論文は、飛行遅延を予測するための効果的なエンドツーエンドの方法論を概説する。
異なるネットワーク間で高い精度で遅延を予測できるモデルの有用性は、乗客の不安を軽減し、運用上の意思決定を改善するのに役立つ
関連論文リスト
- Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
最先端のモデルは、可能な限り最良の方法でデータを考えるのに苦労することが多い。
本稿では,駅間の移動時間をグラフニューラルネットワークアーキテクチャの重み付き隣接行列に組み込む新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:11:07Z) - Airport Delay Prediction with Temporal Fusion Transformers [24.280246809961945]
本研究は,米国最上位30空港において,新しい時空核融合変圧器モデルを適用し,第4四半期の空港到着遅延を予測することを提案する。
我々のモデルには、空港の需要と容量予測、歴史的な空港の運転効率情報、空港の風と可視性、さらには気象や交通条件などが含まれる。
論文 参考訳(メタデータ) (2024-05-14T03:27:15Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Machine Learning-Enhanced Aircraft Landing Scheduling under
Uncertainties [14.474624795989824]
自動化と安全性の向上を目的とした,革新的な機械学習(ML)強化型ランディングスケジューリング手法を提案する。
ML予測は、時間制約のある旅行セールスマン問題の定式化において、安全制約として統合される。
ケーススタディでは、FCFS(First-Come-First-Served)ルールと比較して、総着陸時間が平均17.2%減少している。
論文 参考訳(メタデータ) (2023-11-27T17:50:14Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Data-Efficient Modeling for Precise Power Consumption Estimation of
Quadrotor Operations Using Ensemble Learning [3.722516004544342]
エレクトロニック・テイクオフ・アンド・ランディング (EVTOL) は、新興都市空力において主要な航空機であると考えられている。
本研究では,eVTOL航空機の消費電力モデル化のための枠組みを構築した。
そこで我々は,3種類の四重項の飛行記録を用いたデータ駆動モデルを構築するために,アンサンブル学習法,すなわち積み重ね法を用いた。
論文 参考訳(メタデータ) (2022-05-23T02:16:43Z) - Multi-Airport Delay Prediction with Transformers [0.0]
TFT(Temporal Fusion Transformer)は、複数の空港での出発と到着の遅れを同時に予測するために提案された。
このアプローチは、予測時に既知の入力の複雑な時間的ダイナミクスをキャプチャし、選択された遅延メトリクスを4時間先まで予測することができる。
論文 参考訳(メタデータ) (2021-11-04T21:58:11Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
空気の乱気流予測は、乗客の安全を保ち、効率を最大化し、コストを下げるガイドルートである有害な乱気流を避けるのに役立つ。
従来の予測手法は、動的で複雑な気象条件では効果の低い、高度にカスタマイズされた乱流指数に依存している。
本研究では,(1)複雑な時間的相関関係と(2)希少性,非常に限られた乱流ラベルが得られるという2つの課題から,機械学習による乱流予測システムを提案する。
論文 参考訳(メタデータ) (2020-10-26T21:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。