The temporal resolution limit in quantum sensing
- URL: http://arxiv.org/abs/2507.09172v1
- Date: Sat, 12 Jul 2025 07:38:27 GMT
- Title: The temporal resolution limit in quantum sensing
- Authors: Cong-Gang Song, Qing-yu Cai,
- Abstract summary: This study combines the distinguishable condition of quantum states with quantum speed limits to establish a lower bound on interrogation time.<n>When the interrogation time falls below this bound, the output state becomes statistically indistinguishable from the input state, and the information will inevitably be lost in noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal resolution is a critical figure of merit in quantum sensing. This study combines the distinguishable condition of quantum states with quantum speed limits to establish a lower bound on interrogation time. When the interrogation time falls below this bound, the output state becomes statistically indistinguishable from the input state, and the information will inevitably be lost in noise. Without loss of generality, we extend these conclusions to time-dependent signal Hamiltonian. In theory, leveraging certain quantum control techniques allows us to calculate the minimum interrogation time for arbitrary signal Hamiltonian. Finally, we illustrate the impact of quantum speed limits on magnetic field measurements and temporal resolution.
Related papers
- Topological control of quantum speed limits [55.2480439325792]
We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
arXiv Detail & Related papers (2025-07-21T18:00:07Z) - Towards Heisenberg limit without critical slowing down via quantum reinforcement learning [24.980216976860866]
We propose a quantum reinforcement learning (QRL)-enhanced critical sensing protocol for quantum many-body systems.<n>We show that QRL-learned sequences reach the finite quantum speed limit and generalize effectively across systems of arbitrary size.<n>Our study highlights the efficacy of QRL in enabling precise quantum state preparation, thereby advancing scalable, high-accuracy quantum critical sensing.
arXiv Detail & Related papers (2025-03-04T02:42:27Z) - Digitized counterdiabatic quantum critical dynamics [32.73124984242397]
We experimentally demonstrate that a digitized counterdiabatic quantum protocol reduces the number of topological defects created during a fast quench.<n>We utilize superconducting cloud-based quantum processors with up to 156 qubits.
arXiv Detail & Related papers (2025-02-20T23:43:04Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Quantum speed limit for Kirkwood-Dirac quasiprobabilities [0.0]
We derive quantum speed limits for two-time correlation functions arising from statistics of measurements.<n>Our quantum speed limits are derived from the Heisenberg-Robertson uncertainty relation, and set the minimal time at which a quasiprobability can become non-positive.<n>As an illustrative example, we apply these results to a conditional quantum gate, by determining the optimal condition giving rise to non-classicality at maximum speed.
arXiv Detail & Related papers (2024-02-12T11:28:56Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Noise prediction and reduction of single electron spin by
deep-learning-enhanced feedforward control [26.13935769245144]
Noise-induced control imperfection is an important problem in applications of diamond-based nano-scale sensing.
We introduce the deep learning approach to relax this restriction by predicting the trend of noise and compensating the delay.
arXiv Detail & Related papers (2022-01-16T09:19:18Z) - Rapid Quantum Squeezing by Jumping the Harmonic Oscillator Frequency [2.229264819097804]
We create squeezed states of atomic motion by sudden changes of the harmonic oscillation frequency of atoms in an optical lattice.
Our results can speed up quantum gates and enable quantum sensing and quantum information processing in noisy environments.
arXiv Detail & Related papers (2021-10-01T08:18:29Z) - Time scaling and quantum speed limit in non-Hermitian Hamiltonians [0.0]
We report on a time scaling technique to enhance the performances of quantum protocols in non-Hermitian systems.
We derive the quantum speed limit in a system governed by a non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2021-06-09T15:56:16Z) - Demonstration of quantum brachistochrones between distant states of an
atom [0.0]
We show fast coherent transport of an atomic wave packet over a distance of 15 times its size.
Results shed light upon a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.
arXiv Detail & Related papers (2020-09-04T15:00:11Z) - Operational definition of a quantum speed limit [8.987823293206912]
The quantum speed limit is a fundamental concept in quantum mechanics, which aims at finding the minimum time scale or the maximum dynamical speed for some fixed targets.
Here we provide an operational approach for the definition of the quantum speed limit, which utilizes the set of states that can fulfill the target to define the speed limit.
arXiv Detail & Related papers (2020-02-25T12:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.