論文の概要: DLBAcalib: Robust Extrinsic Calibration for Non-Overlapping LiDARs Based on Dual LBA
- arxiv url: http://arxiv.org/abs/2507.09176v1
- Date: Sat, 12 Jul 2025 07:48:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.655562
- Title: DLBAcalib: Robust Extrinsic Calibration for Non-Overlapping LiDARs Based on Dual LBA
- Title(参考訳): DLBAcalib:デュアルLBAに基づく非重畳LiDARのロバスト外部校正
- Authors: Han Ye, Yuqiang Jin, Jinyuan Liu, Tao Li, Wen-An Zhang, Minglei Fu,
- Abstract要約: 本稿では,マルチLiDARシステムのための新しいターゲットレス外部キャリブレーションフレームワークを提案する。
提案手法は,目標LiDARからの連続走査により,正確な基準点クラウドマップを構築する。
本フレームワークでは,平均翻訳誤差が5mm,回転誤差が0.2deg,初期誤差が0.4m/30degである。
- 参考スコア(独自算出の注目度): 11.721420447780032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate extrinsic calibration of multiple LiDARs is crucial for improving the foundational performance of three-dimensional (3D) map reconstruction systems. This paper presents a novel targetless extrinsic calibration framework for multi-LiDAR systems that does not rely on overlapping fields of view or precise initial parameter estimates. Unlike conventional calibration methods that require manual annotations or specific reference patterns, our approach introduces a unified optimization framework by integrating LiDAR bundle adjustment (LBA) optimization with robust iterative refinement. The proposed method constructs an accurate reference point cloud map via continuous scanning from the target LiDAR and sliding-window LiDAR bundle adjustment, while formulating extrinsic calibration as a joint LBA optimization problem. This method effectively mitigates cumulative mapping errors and achieves outlier-resistant parameter estimation through an adaptive weighting mechanism. Extensive evaluations in both the CARLA simulation environment and real-world scenarios demonstrate that our method outperforms state-of-the-art calibration techniques in both accuracy and robustness. Experimental results show that for non-overlapping sensor configurations, our framework achieves an average translational error of 5 mm and a rotational error of 0.2{\deg}, with an initial error tolerance of up to 0.4 m/30{\deg}. Moreover, the calibration process operates without specialized infrastructure or manual parameter tuning. The code is open source and available on GitHub (\underline{https://github.com/Silentbarber/DLBAcalib})
- Abstract(参考訳): 複数のLiDARの正確な外部校正は3次元地図再構成システムの基本性能向上に不可欠である。
本稿では、重なり合う視野や正確な初期パラメータ推定に依存しないマルチLiDARシステムのための新しいターゲットレス外部キャリブレーションフレームワークを提案する。
手動のアノテーションや特定の参照パターンを必要とする従来のキャリブレーション手法とは異なり,本手法では,LiDARバンドル調整(LBA)最適化と堅牢な反復修正を統合することにより,統一的な最適化フレームワークを導入している。
提案手法は,LBA最適化問題として外部キャリブレーションを定式化しながら,目標LiDARからの連続走査とスライドウインドウLiDARバンドル調整による正確な基準点クラウドマップを構築する。
本手法は,累積写像誤差を効果的に軽減し,適応重み付け機構を用いて外周抵抗パラメータ推定を実現する。
CARLAシミュレーション環境と実世界のシナリオの両方において,本手法が精度とロバスト性の両方で最先端のキャリブレーション技術より優れていることを示す。
実験の結果, 重なり合わないセンサ構成では, 平均翻訳誤差が5mm, 回転誤差が0.2{\degであり, 初期誤差は0.4m/30{\degであることがわかった。
さらに、キャリブレーションプロセスは、特別なインフラストラクチャや手動パラメータチューニングなしで動作します。
コードはオープンソースで、GitHubで入手できる(\underline{https://github.com/Silentbarber/DLBAcalib})。
関連論文リスト
- CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement [5.069968819561576]
CalibRefineは完全に自動化され、ターゲットレス、オンラインキャリブレーションフレームワークである。
生のLiDAR点雲とカメラ画像を直接処理する。
以上の結果から,頑健なオブジェクトレベルの特徴マッチングと反復的改善と自己監督的注意に基づく改善が組み合わさって,信頼性の高いセンサアライメントを実現することが示唆された。
論文 参考訳(メタデータ) (2025-02-24T20:53:42Z) - Robust Second-order LiDAR Bundle Adjustment Algorithm Using Mean Squared Group Metric [5.153195958837083]
我々は,LiDAR BAアルゴリズムの最適化目標を構築するために,新しい平均2乗群計量(MSGM)を提案する。
堅牢なカーネル関数を統合することで、BAアルゴリズムに関わるメトリクスを再重み付けし、ソリューションプロセスの堅牢性を高める。
論文 参考訳(メタデータ) (2024-09-03T12:53:39Z) - RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency
Learning [42.90987864456673]
LiDARカメラ外部推定の現在の手法は、オフラインの目標と人間の努力に依存している。
本稿では,外因性キャリブレーション問題に頑健で自動的で単発的な方法で対処する新しい手法を提案する。
我々は,異なるデータセットの総合的な実験を行い,本手法が正確かつ堅牢な性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-02T09:29:50Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - End-To-End Optimization of LiDAR Beam Configuration for 3D Object
Detection and Localization [87.56144220508587]
与えられたアプリケーションに対するLiDARビーム構成の最適化を学ぶために、新しい経路を取る。
ビーム構成を自動的に最適化する強化学習に基づく学習最適化フレームワークを提案する。
本手法は低解像度(低コスト)のLiDARが必要な場合に特に有用である。
論文 参考訳(メタデータ) (2022-01-11T09:46:31Z) - Square Root Bundle Adjustment for Large-Scale Reconstruction [56.44094187152862]
QR分解によるランドマーク変数のnullspace marginalizationに依存するバンドル調整問題の新たな定式化を提案する。
平方根束調整と呼ばれる私たちのアプローチは、一般的に使用されるSchur補完トリックと代数的に等価です。
BALデータセットを用いた実世界での実験では、提案されたソルバが単一の精度でも平均的等しく正確なソリューションで達成できることを示す。
論文 参考訳(メタデータ) (2021-03-02T16:26:20Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Global Unifying Intrinsic Calibration for Spinning and Solid-State
LiDARs [1.6252896527001484]
スピンおよび固体LiDARの新しいキャリブレーションモデルを提案する。
提案モデルが適切に向き付けされた4つの対象に対して十分に制約された(一意の答えを持つ)ことを数学的に証明する。
スピンリングLiDARにおいて,提案した行列Lie GroupモデルがP2P距離を低減しつつ,ノイズに対してより頑健であることを示す実験データを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-06T16:55:58Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z) - Robust Odometry and Mapping for Multi-LiDAR Systems with Online
Extrinsic Calibration [15.946728828122385]
本稿では,複数のLiDARのロバストかつ同時キャリブレーション,オドメトリー,マッピングを実現するシステムを提案する。
キャリブレーションとSLAMのための10列(全長4.60km)の広範囲な実験により,本手法の性能を検証した。
提案手法は,様々なマルチLiDARセットアップのための完全で堅牢なシステムであることを示す。
論文 参考訳(メタデータ) (2020-10-27T13:51:26Z) - Accurate Alignment Inspection System for Low-resolution Automotive and
Mobility LiDAR [125.41260574344933]
車両やロボットなどの移動システムにおいて,センサ装着後のLiDARアライメント誤差を正確に推定する検査システムを提案する。
提案手法は, 固定位置における1つのターゲットボードのみを用いて, 水平方向(回転, 傾き, ヨー)とLiDARアタッチメントの水平位置を, 水平方向の精度で推定する。
論文 参考訳(メタデータ) (2020-08-24T17:47:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。