Defects and their Time Scales in Quantum and Classical Annealing of the Two-Dimensional Ising Model
- URL: http://arxiv.org/abs/2507.09273v1
- Date: Sat, 12 Jul 2025 12:59:40 GMT
- Title: Defects and their Time Scales in Quantum and Classical Annealing of the Two-Dimensional Ising Model
- Authors: Phillip Weinberg, Na Xu, Anders W. Sandvik,
- Abstract summary: We investigate defects in the two-dimensional transverse-field Ising ferromagnet on periodic $Ltimes L$ lattices.<n>We observe the expected critical Kibble-Zurek (KZ) time scale $propto Lz+1/nu$ at the quantum phase transition.
- Score: 1.078085076551721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate defects in the two-dimensional transverse-field Ising ferromagnet on periodic $L\times L$ lattices after quantum annealing from high to vanishing field. With exact numerical solutions for $L \le 6$, we observe the expected critical Kibble-Zurek (KZ) time scale $\propto L^{z+1/\nu}$ (with $z=1$ and $1/\nu \approx 1.59$) at the quantum phase transition. We also observe KZ scaling of the ground-state fidelity at the end of the process. The excitations evolve by coarsening dynamics of confined defects, with a time scale $\propto L^2$, and interface fluctuations of system-spanning defects, with life time $\propto L^3$. We build on analogies with classical simulated annealing, where we characterize system-spanning defects in detail and find differences in the dynamic scales of domain walls with winding numbers $W=(1,0)/(0,1)$ (horizontal/vertical) and $W=(1,1)$ (diagonal). They decay on time scales $\propto L^3$ (which applies also to system-spanning domains in systems with open boundaries) and $\propto L^{3.4}$, respectively, when imposed in the ordered phase. As a consequence of $L^{3.4}$ exceeding the classical KZ scale $L^{z+1/\nu}=L^{3.17}$ the probability of $W=(1,1)$ domains in SA scales with the KZ exponent even in the final $T=0$ state. In QA, also the $W=(1,0)/(0,1)$ domains are controlled by the KZ time scale $L^{2.59}$. The $L^3$ scale can nevertheless be detected in the excited states, using a method that we develop that should also be applicable in QA experiments.
Related papers
- Mesoscopic Fluctuations and Multifractality at and across Measurement-Induced Phase Transition [46.176861415532095]
We explore statistical fluctuations over the ensemble of quantum trajectories in a model of two-dimensional free fermions.<n>Our results exhibit a remarkable analogy to Anderson localization, with $G_AB$ corresponding to two-terminal conductance.<n>Our findings lay the groundwork for mesoscopic theory of monitored systems, paving the way for various extensions.
arXiv Detail & Related papers (2025-07-15T13:44:14Z) - Causality, localisation, and universality of monitored quantum walks with long-range hopping [0.0]
We show that the optimal resetting rate depends on the size of the lattice and diverges as $alphato 0$.<n>We derive simple models reproducing the numerical results, shedding light on the interplay of long-range coherent dynamics, symmetries, and local quantum measurement processes.
arXiv Detail & Related papers (2025-04-16T13:08:42Z) - Out-of-equilibrium dynamics across the first-order quantum transitions of one-dimensional quantum Ising models [0.0]
We study the out-of-equilibrium dynamics of one-dimensional quantum Ising models in a transverse field $g$.<n>We consider nearest-neighbor Ising chains of size $L$ with periodic boundary conditions.
arXiv Detail & Related papers (2025-04-14T20:00:27Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency [47.8739414267201]
We consider gradient descent (GD) with a constant stepsize applied to logistic regression with linearly separable data.
We show that GD exits this initial oscillatory phase rapidly -- in $mathcalO(eta)$ steps -- and subsequently achieves an $tildemathcalO (1 / (eta t) )$ convergence rate.
Our results imply that, given a budget of $T$ steps, GD can achieve an accelerated loss of $tildemathcalO (1/T2)$ with an aggressive stepsize
arXiv Detail & Related papers (2024-02-24T23:10:28Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Universal Entanglement Transitions of Free Fermions with Long-range
Non-unitary Dynamics [16.533265279392772]
Non-unitary evolution can give rise to novel steady states classified by their entanglement properties.
In this work, we aim to understand its interplay with long-range hopping that decays with $r-alpha$ in free-fermion systems.
arXiv Detail & Related papers (2021-05-19T02:52:48Z) - Self-Organized Error Correction in Random Unitary Circuits with
Measurement [0.0]
We quantify a universal, subleading logarithmic contribution to the volume law entanglement entropy.
We find that measuring a qudit deep inside $A$ will have negligible effect on the entanglement of $A$.
We assume that the volume-law state is an encoding of a Page state in a quantum error-correcting code.
arXiv Detail & Related papers (2020-02-27T19:00:42Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.