論文の概要: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2507.09279v3
- Date: Tue, 22 Jul 2025 03:52:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 15:16:11.86044
- Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
- Title(参考訳): Prompt4Trust:マルチモーダル大言語モデルにおける臨床適合信頼度校正のための強化学習促進フレームワーク
- Authors: Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel,
- Abstract要約: Prompt4Trustは,MLLMにおける信頼度校正をターゲットとした即時強化のための,最初の強化学習フレームワークである。
従来のキャリブレーション技術とは異なり、Prompt4Trustは安全で信頼性の高い臨床診断に最も重要なキャリブレーションの側面を特に優先している。
実験では,より大きなMLLMに対してゼロショットの一般化が期待できることを示した。
- 参考スコア(独自算出の注目度): 1.4008409814572673
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.
- Abstract(参考訳): マルチモーダルな大規模言語モデル(MLLM)は、医療分野での応用にかなりの可能性を秘めている。
しかしながら、安全クリティカルな設定でのデプロイメントは、2つの重要な制限によって妨げられています。
一 設計の促進に敏感なこと、及び
(二)信頼度の高い誤った反応を生じさせる傾向。
臨床医は、予測の信頼性を評価するためにモデルが主張する信頼に頼っている可能性があるため、モデルが高い信頼性を示す場合、非常に正確であることも特に重要である。
Prompt4Trustは,MLLMにおける信頼度校正をターゲットとした迅速な強化を目的とした,最初の強化学習(RL)フレームワークである。
軽量LCMは、下流タスクMLLMを誘導する文脈認識補助プロンプトを生成し、表現された自信が予測精度をより正確に反映する応答を生成するように訓練される。
従来のキャリブレーション技術とは異なり、Prompt4Trustは安全で信頼性の高い臨床診断に最も重要なキャリブレーションの側面を特に優先している。
本手法は, この臨床目的のキャリブレーション目標による改善に加えて, 多様な医用画像モダリティにまたがる複数項目の質問からなるPMC-VQAベンチマークにおいて, 最先端の医用視覚質問応答(VQA)の性能を達成し, タスク精度の向上も図っている。
さらに,小型のダウンストリームタスクMLLMでトレーニングしたフレームワークでは,より大きなMLLMに対してゼロショットの一般化が期待できることを示すとともに,計算コストを伴わない拡張性キャリブレーションの可能性も示唆した。
この研究は、安全クリティカルセッティングにおけるMLLMの信頼性を向上させるために、自動化されているが、人力による迅速なエンジニアリングの可能性を示す。
私たちのコードベースはhttps://github.com/xingbpshen/prompt4trustにあります。
関連論文リスト
- Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models [87.66870367661342]
大規模言語モデル(LLM)は、医療におけるAIアプリケーションで使用される。
LLMを継続的にストレステストするレッドチームフレームワークは、4つのセーフティクリティカルなドメインで重大な弱点を明らかにすることができる。
敵エージェントのスイートは、自律的に変化するテストケースに適用され、安全でないトリガー戦略を特定し、評価する。
私たちのフレームワークは、進化可能でスケーラブルで信頼性の高い、次世代の医療AIのセーフガードを提供します。
論文 参考訳(メタデータ) (2025-07-30T08:44:22Z) - Calibrating Uncertainty Quantification of Multi-Modal LLMs using Grounding [48.92310906093414]
マルチモーダル大言語モデル(LLM)に適した不確実性定量化(UQ)の校正手法を提案する。
マルチモーダルモデルのキャリブレーションを改善するために,自己整合性に加えてクロスモーダル整合性を活用する。
医療質問応答(Slake)や視覚質問応答(VQAv2)といった複数のマルチモーダルタスクに対して,LLaVA-MedやLLaVAといったマルチモーダルモデルを考慮したアプローチを提案する。
論文 参考訳(メタデータ) (2025-04-30T19:19:21Z) - Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation [26.580361841501514]
視覚言語モデル(VLM)は様々なマルチモーダルタスクに優れるが、しばしばキャリブレーションに苦しむ。
この誤判定は、特にモデルが不正確または製造された情報を確実に提供した場合、ユーザーの信頼を損なう。
本稿では,文節摂動(CSP)フレームワークを新たに提案し,オブジェクト中心クエリの言語的信頼度を校正する手法を提案する。
論文 参考訳(メタデータ) (2025-04-21T04:01:22Z) - SteerConf: Steering LLMs for Confidence Elicitation [11.872504642312705]
大規模言語モデル(LLM)は、様々な領域で素晴らしいパフォーマンスを示すが、しばしば過剰な自信に悩まされる。
本稿では,LCMの信頼性スコアを体系的に評価し,キャリブレーションと信頼性を向上させる新しいフレームワークであるSteerConfを提案する。
論文 参考訳(メタデータ) (2025-03-04T18:40:49Z) - Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models [34.59785123314865]
LLM(Large Language Models)の安全かつ信頼性の高い使用には、その回答に対する信頼性の正確な表現が必要である。
そこで本研究では,LLMを直接微調整し,評価された信頼度を,実際の質問に対する回答とともに表現できる新しい強化学習手法を提案する。
論文 参考訳(メタデータ) (2025-03-04T13:48:50Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
大規模言語モデル(LLM)は、不一致の自己認識に起因する幻覚の傾向にある。
本稿では,高速かつ低速な推論システムを統合し,信頼性とユーザビリティを調和させる明示的知識境界モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T03:16:02Z) - Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models [0.6091702876917281]
大規模言語モデル(LLM)は、自然言語処理において顕著な熟練度を示す。
予測された信頼と真の正しさの過度なミスサライメントは、重要な意思決定アプリケーションに重大なリスクをもたらす。
9つのLCMと3つの質問応答データセットにわたるLCMの校正に関する包括的分析を行った。
論文 参考訳(メタデータ) (2025-02-16T07:46:09Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
本稿では,事実レベルでの信頼度と妥当性の重み付けを校正するFact-Levelフレームワークを提案する。
また,信頼度の高い自己補正(textbfConFix$)も開発した。
論文 参考訳(メタデータ) (2024-11-20T14:15:18Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
ブラックボックスの大規模言語モデル(LLM)は、様々な環境に徐々に展開されている。
LLMは、しばしば過剰な自信を示し、潜在的なリスクや誤った判断につながる。
本稿では,非定型的なプレゼンテーションを利用してモデルの信頼度を推定する新しい手法であるtextitAtypical presentations Recalibrationを提案する。
論文 参考訳(メタデータ) (2024-09-05T03:45:35Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
我々はconfidence-Quality-ORDer保存アライメントアプローチ(CONQORD)を提案する。
品質報酬と秩序保存アライメント報酬機能を統合する。
実験により,CONQORDは信頼性と応答精度のアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-26T09:42:46Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
ファクト・アンド・リフレクション(FaR)プロンプトを提案し,LLMキャリブレーションを2ステップで改善する。
実験の結果、FaRはキャリブレーションが大幅に向上し、期待される誤差を23.5%下げた。
FaRは、信頼性の低いシナリオにおいて、言語的に関心を表現できる能力さえも持っています。
論文 参考訳(メタデータ) (2024-02-27T01:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。