論文の概要: SteerConf: Steering LLMs for Confidence Elicitation
- arxiv url: http://arxiv.org/abs/2503.02863v2
- Date: Fri, 23 May 2025 20:17:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 14:32:53.540419
- Title: SteerConf: Steering LLMs for Confidence Elicitation
- Title(参考訳): SteerConf: 信頼の緩和のためのLLMのステアリング
- Authors: Ziang Zhou, Tianyuan Jin, Jieming Shi, Qing Li,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域で素晴らしいパフォーマンスを示すが、しばしば過剰な自信に悩まされる。
本稿では,LCMの信頼性スコアを体系的に評価し,キャリブレーションと信頼性を向上させる新しいフレームワークであるSteerConfを提案する。
- 参考スコア(独自算出の注目度): 11.872504642312705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) exhibit impressive performance across diverse domains but often suffer from overconfidence, limiting their reliability in critical applications. We propose SteerConf, a novel framework that systematically steers LLMs' confidence scores to improve their calibration and reliability. SteerConf introduces three key components: (1) a steering prompt strategy that guides LLMs to produce confidence scores in specified directions (e.g., conservative or optimistic) by leveraging prompts with varying steering levels; (2) a steered confidence consistency measure that quantifies alignment across multiple steered confidences to enhance calibration; and (3) a steered confidence calibration method that aggregates confidence scores using consistency measures and applies linear quantization for answer selection. SteerConf operates without additional training or fine-tuning, making it broadly applicable to existing LLMs. Experiments on seven benchmarks spanning professional knowledge, common sense, ethics, and reasoning tasks, using advanced LLM models (GPT-3.5, LLaMA 3, GPT-4), demonstrate that SteerConf significantly outperforms existing methods, often by a significant margin. Our findings highlight the potential of steering the confidence of LLMs to enhance their reliability for safer deployment in real-world applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なドメインにまたがる優れたパフォーマンスを示すが、しばしば過剰な自信に悩まされ、重要なアプリケーションの信頼性が制限される。
本稿では,LCMの信頼性スコアを体系的に評価し,キャリブレーションと信頼性を向上させる新しいフレームワークであるSteerConfを提案する。
SteerConf では,(1) 一定の方向(例えば,保守的,楽観的)で信頼スコアを生成するために LLM を誘導するステアリングプロンプト戦略,(2) 複数のステアリング信頼度をまたいだアライメントを定量化してキャリブレーションを向上するステアリング信頼度調整法,(3) 整合性尺度を用いて信頼スコアを集計し,回答選択に線形量子化を適用するステアリング信頼度調整法,の3つの重要な要素を紹介した。
SteerConfは追加のトレーニングや微調整なしで動作し、既存のLLMにも広く適用できる。
高度なLLMモデル(GPT-3.5, LLaMA 3, GPT-4)を用いて、専門知識、常識、倫理、推論タスクにまたがる7つのベンチマークの実験は、SteerConfが既存の手法よりも大幅に優れており、しばしばかなりの差があることを示している。
本研究は, LLMの信頼性を向上し, 現実のアプリケーションへの安全なデプロイの信頼性を高める可能性を明らかにするものである。
関連論文リスト
- Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences [62.52739672949452]
言語モデル(LM)は、ユーザーがアウトプットの誤りを検知し、必要であれば人間の専門家に延期するのに役立つ、信頼性の高い信頼推定を提供する必要がある。
本稿では,相対的信頼度推定法を提案する。そこでは,相互に質問をマッチングし,モデルに信頼度を相対的に判断するよう求める。
各質問を、他の質問に対する「プレイヤー」として扱い、モデルの選好を一致結果として扱うことで、モデルの信頼性選好を信頼スコアに変換するために、Elo評価やBradley-Terryのようなランクアグリゲーション手法を使うことができる。
論文 参考訳(メタデータ) (2025-02-03T07:43:27Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
大規模言語モデル(LLM)の不確実性定量化は、その応答に対するより人間的な信頼を確立することができる。
この研究は、出力トークンの一部として信頼度スコアで不確実性を言語化するようLLM自身に求めることに重点を置いている。
我々は、異なるデータセット、モデル、およびプロンプトメソッドに関して、言語化された信頼度スコアの信頼性を評価する。
論文 参考訳(メタデータ) (2024-12-19T11:10:36Z) - Confidence in the Reasoning of Large Language Models [0.0]
信頼度は、再考を促す際に、答えを維持するための永続性の観点から測定される。
信頼は、基礎となるトークンレベルの確率によってのみ部分的に説明される。
論文 参考訳(メタデータ) (2024-12-19T10:04:29Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
本稿では,事実レベルでの信頼度と妥当性の重み付けを校正するFact-Levelフレームワークを提案する。
また,信頼度の高い自己補正(textbfConFix$)も開発した。
論文 参考訳(メタデータ) (2024-11-20T14:15:18Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelfは、大規模言語モデルに、より正確なきめ細かな信頼推定を表現するためのトレーニングフレームワークである。
さらに、SaySelf は LLM に対して、パラメトリック知識のギャップを明確に識別する自己反射的合理性を生成するよう指示する。
生成した自己反射的理性は合理的であり、キャリブレーションにさらに貢献できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:21:16Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
我々はconfidence-Quality-ORDer保存アライメントアプローチ(CONQORD)を提案する。
品質報酬と秩序保存アライメント報酬機能を統合する。
実験により,CONQORDは信頼性と応答精度のアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-26T09:42:46Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
本稿では, LLM生成解を超える包括的解答空間を考察した, 新たな自己検出パラダイムを提案する。
このパラダイムに基づいて、2段階のフレームワークを導入し、まずまずLLMに各候補の回答を反映し、正当化するように指示する。
このフレームワークは、優れた自己検出のための既存のアプローチとシームレスに統合できる。
論文 参考訳(メタデータ) (2024-03-15T02:38:26Z) - Reconfidencing LLMs from the Grouping Loss Perspective [56.801251926946485]
大規模言語モデル(LLM)は、自信のある音調で幻覚的な答えを生じさせる可能性がある。
近年の研究では、不確実性制御はキャリブレーションを超えて行わなければならないことが示されている。
そこで我々は,MistralとLLaMAの回答に対する信頼度を評価するために,知識ベースから導出した新しい評価データセットを構築した。
論文 参考訳(メタデータ) (2024-02-07T15:40:22Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
我々は、訓練されたモデルに対する自信の過剰な問題をチェックおよび緩和することのできる、自己教師型探索の新しいアプローチを導入する。
既存の信頼性関連手法に対して,プラグイン・アンド・プレイ方式で柔軟に適用可能な,シンプルで効果的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-06T08:57:20Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。