A Framework for Predictive Directional Trading Based on Volatility and Causal Inference
- URL: http://arxiv.org/abs/2507.09347v1
- Date: Sat, 12 Jul 2025 16:53:32 GMT
- Title: A Framework for Predictive Directional Trading Based on Volatility and Causal Inference
- Authors: Ivan Letteri,
- Abstract summary: This study introduces a novel framework for identifying and exploiting predictive lead-lag relationships in financial markets.<n>We propose an integrated approach that combines advanced statistical methodologies with machine learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Purpose: This study introduces a novel framework for identifying and exploiting predictive lead-lag relationships in financial markets. We propose an integrated approach that combines advanced statistical methodologies with machine learning models to enhance the identification and exploitation of predictive relationships between equities. Methods: We employed a Gaussian Mixture Model (GMM) to cluster nine prominent stocks based on their mid-range historical volatility profiles over a three-year period. From the resulting clusters, we constructed a multi-stage causal inference pipeline, incorporating the Granger Causality Test (GCT), a customised Peter-Clark Momentary Conditional Independence (PCMCI) test, and Effective Transfer Entropy (ETE) to identify robust, predictive linkages. Subsequently, Dynamic Time Warping (DTW) and a K-Nearest Neighbours (KNN) classifier were utilised to determine the optimal time lag for trade execution. The resulting strategy was rigorously backtested. Results: The proposed volatility-based trading strategy, tested from 8 June 2023 to 12 August 2023, demonstrated substantial efficacy. The portfolio yielded a total return of 15.38%, significantly outperforming the 10.39% return of a comparative Buy-and-Hold strategy. Key performance metrics, including a Sharpe Ratio up to 2.17 and a win rate up to 100% for certain pairs, confirmed the strategy's viability. Conclusion: This research contributes a systematic and robust methodology for identifying profitable trading opportunities derived from volatility-based causal relationships. The findings have significant implications for both academic research in financial modelling and the practical application of algorithmic trading, offering a structured approach to developing resilient, data-driven strategies.
Related papers
- A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books [0.0]
This study conducts a comparative analysis of robust statistical methods and advanced machine learning techniques for real-time anomaly identification in cryptocurrency limit order books (LOBs)<n>We evaluate the efficacy of thirteen diverse models to identify which approaches are most suitable for detecting potentially manipulative trading behaviours.<n>An empirical evaluation, conducted via backtesting on a dataset of 26,204 records from a major exchange, demonstrates that the top-performing model, Empirical Covariance (EC), achieves a 6.70% gain, significantly outperforming a standard Buy-and-Hold benchmark.
arXiv Detail & Related papers (2025-07-20T13:42:36Z) - Enhancing CTR Prediction with De-correlated Expert Networks [53.05653547330796]
We propose a De-Correlated MoE (D-MoE) framework, which introduces a Cross-Expert De-Correlation loss to minimize expert correlations.<n>Extensive experiments have been conducted to validate the effectiveness of D-MoE and the de-correlation principle.
arXiv Detail & Related papers (2025-05-23T14:04:38Z) - FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making.<n>FinTSB is a comprehensive and practical benchmark for financial time series forecasting.
arXiv Detail & Related papers (2025-02-26T05:19:16Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach [0.0]
Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis.
We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period.
The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83.
arXiv Detail & Related papers (2024-08-27T11:08:37Z) - Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
This paper adopts a perspective where data gradually and continuously reveal over time.<n>The original model is recast into an online learning framework, which is free from any statistical assumptions.<n>When the distribution of future data follows a normal shape, the growth rate of wealth is shown to increase by lifting the portfolio along the efficient frontier through the calibration of risk aversion.
arXiv Detail & Related papers (2024-06-19T12:11:42Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
The study seeks to develop an effective strategy based on the novel framework of statistical arbitrage based on graph clustering algorithms.
The study seeks to provide an integrated approach to optimal signal detection and risk management.
arXiv Detail & Related papers (2024-06-15T17:25:32Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models.<n>We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies.<n>We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries.
arXiv Detail & Related papers (2024-05-02T16:50:47Z) - Deep Learning Enhanced Realized GARCH [6.211385208178938]
We propose a new approach to volatility modeling by combining deep learning (LSTM) and realized volatility measures.
This LSTM-enhanced realized GARCH framework incorporates and distills modeling advances from financial econometrics, high frequency trading data and deep learning.
arXiv Detail & Related papers (2023-02-16T00:20:43Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.