Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach
- URL: http://arxiv.org/abs/2409.06728v1
- Date: Tue, 27 Aug 2024 11:08:37 GMT
- Title: Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach
- Authors: Sanjay Sathish, Charu C Sharma,
- Abstract summary: Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis.
We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period.
The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis. To capture the complex non-linear relationships between stock prices, we utilize recurrence plots (RP) and cross-recurrence quantification analysis (CRQA). By transforming Cross Recurrence Plot (CRP) data into a time-series format, we enable the use of Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks for predicting stock price synchronization through both regression and classification. We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period. The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83 offering valuable insights for developing effective trading strategies and risk management tools.
Related papers
- Multi-relational Graph Diffusion Neural Network with Parallel Retention
for Stock Trends Classification [6.383640665055313]
We propose a graph-based representation learning approach aimed at predicting future movements of multiple stocks.
Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years.
arXiv Detail & Related papers (2024-01-05T17:15:45Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Stock Price Prediction Using Temporal Graph Model with Value Chain Data [3.1641827542160805]
We introduce a neural network-based stock return prediction method, the Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN) model.
Our experiments demonstrate that the LSTM-GCN model can capture additional information from value chain data that are not fully reflected in price data.
arXiv Detail & Related papers (2023-03-07T17:24:04Z) - Predicting the State of Synchronization of Financial Time Series using
Cross Recurrence Plots [75.20174445166997]
This study introduces a new method for predicting the future state of synchronization of the dynamics of two financial time series.
We adopt a deep learning framework for methodologically addressing the prediction of the synchronization state.
We find that the task of predicting the state of synchronization of two time series is in general rather difficult, but for certain pairs of stocks attainable with very satisfactory performance.
arXiv Detail & Related papers (2022-10-26T10:22:28Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
We propose a new trading strategy, called DNN-forwardtesting, that determines the strategy to apply by testing it on the possible future predicted by a deep neural network.
Our trading system calculates the most effective technical indicator by applying it to the DNNs predictions and uses such indicator to guide its trades.
arXiv Detail & Related papers (2022-10-20T19:00:59Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
We present an ensemble of independent and parallel long short-term memory neural networks for the prediction of stock price movement.
With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time.
arXiv Detail & Related papers (2022-01-20T15:17:26Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.