Transformers Don't In-Context Learn Least Squares Regression
- URL: http://arxiv.org/abs/2507.09440v1
- Date: Sun, 13 Jul 2025 01:09:26 GMT
- Title: Transformers Don't In-Context Learn Least Squares Regression
- Authors: Joshua Hill, Benjamin Eyre, Elliot Creager,
- Abstract summary: In-context learning (ICL) has emerged as a powerful capability of large pretrained transformers.<n>We study how transformers implement learning at inference time.<n>We highlight the role of the pretraining corpus in shaping ICL behaviour.
- Score: 5.648229654902264
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In-context learning (ICL) has emerged as a powerful capability of large pretrained transformers, enabling them to solve new tasks implicit in example input-output pairs without any gradient updates. Despite its practical success, the mechanisms underlying ICL remain largely mysterious. In this work we study synthetic linear regression to probe how transformers implement learning at inference time. Previous works have demonstrated that transformers match the performance of learning rules such as Ordinary Least Squares (OLS) regression or gradient descent and have suggested ICL is facilitated in transformers through the learned implementation of one of these techniques. In this work, we demonstrate through a suite of out-of-distribution generalization experiments that transformers trained for ICL fail to generalize after shifts in the prompt distribution, a behaviour that is inconsistent with the notion of transformers implementing algorithms such as OLS. Finally, we highlight the role of the pretraining corpus in shaping ICL behaviour through a spectral analysis of the learned representations in the residual stream. Inputs from the same distribution as the training data produce representations with a unique spectral signature: inputs from this distribution tend to have the same top two singular vectors. This spectral signature is not shared by out-of-distribution inputs, and a metric characterizing the presence of this signature is highly correlated with low loss.
Related papers
- Provable In-Context Learning of Nonlinear Regression with Transformers [58.018629320233174]
In-context learning (ICL) is the ability to perform unseen tasks using task-specific prompts without updating parameters.<n>Recent research has actively explored the training dynamics behind ICL.<n>This paper investigates more complex nonlinear regression tasks, aiming to uncover how transformers acquire in-context learning capabilities.
arXiv Detail & Related papers (2025-07-28T00:09:28Z) - Born a Transformer -- Always a Transformer? [57.37263095476691]
We study a family of $textitretrieval$ and $textitcopying$ tasks inspired by Liu et al.<n>We observe an $textitinduction-versus-anti-induction$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) than the left (anti-induction) of a query token.<n>Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers.
arXiv Detail & Related papers (2025-05-27T21:36:50Z) - Transformers Learn to Implement Multi-step Gradient Descent with Chain of Thought [46.71030329872635]
Chain of Thought (CoT) prompting has been shown to significantly improve the performance of large language models (LLMs)<n>We study the training dynamics of transformers over a CoT objective on an in-context weight prediction task for linear regression.
arXiv Detail & Related papers (2025-02-28T16:40:38Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Trained Transformer Classifiers Generalize and Exhibit Benign Overfitting In-Context [25.360386832940875]
We show that when linear transformers are pre-trained on random instances for linear regression tasks, they make predictions using an algorithm similar to that of ordinary least squares.<n>In some settings, these trained transformers can exhibit "benign overfitting in-context"
arXiv Detail & Related papers (2024-10-02T17:30:21Z) - On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability [34.43255978863601]
Several suggest that transformers learn a mesa-optimizer during autorere training.
We show that a stronger assumption related to the moments of data is the sufficient necessary condition that the learned mesa-optimizer can perform.
arXiv Detail & Related papers (2024-05-27T05:41:06Z) - How Do Nonlinear Transformers Learn and Generalize in In-Context Learning? [82.51626700527837]
Transformer-based large language models displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning.
We analyze how the mechanics of how Transformer to achieve ICL contribute to the technical challenges of the training problems in Transformers.
arXiv Detail & Related papers (2024-02-23T21:07:20Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
This paper takes initial steps on understanding in-context learning (ICL) in more complex scenarios, by studying learning with representations.
We construct synthetic in-context learning problems with a compositional structure, where the label depends on the input through a possibly complex but fixed representation function.
We show theoretically the existence of transformers that approximately implement such algorithms with mild depth and size.
arXiv Detail & Related papers (2023-10-16T17:40:49Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
Attention-based neural networks as transformers have demonstrated a remarkable ability to exhibit inattention learning (ICL)
We show that when transformer training over random instances of linear regression problems, these models' predictions mimic nonlinear of ordinary squares.
arXiv Detail & Related papers (2023-06-16T15:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.