Fourier Basis Mapping: A Time-Frequency Learning Framework for Time Series Forecasting
- URL: http://arxiv.org/abs/2507.09445v2
- Date: Sat, 02 Aug 2025 05:17:13 GMT
- Title: Fourier Basis Mapping: A Time-Frequency Learning Framework for Time Series Forecasting
- Authors: Runze Yang, Longbing Cao, Xin You, Kun Fang, Jianxun Li, Jie Yang,
- Abstract summary: We introduce a novel method for integrating time-frequency features through Fourier basis expansion and mapping in the time-frequency space.<n>Our approach extracts explicit frequency features while preserving temporal characteristics.<n>The results are validated on diverse real-world datasets for both long-term and short-term forecasting tasks.
- Score: 25.304812011127257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Fourier transform and deep learning opens new avenues for time series forecasting. We reconsider the Fourier transform from a basis functions perspective. Specifically, the real and imaginary parts of the frequency components can be regarded as the coefficients of cosine and sine basis functions at tiered frequency levels, respectively. We find that existing Fourier-based methods face inconsistent starting cycles and inconsistent series length issues. They fail to interpret frequency components precisely and overlook temporal information. Accordingly, the novel Fourier Basis Mapping (FBM) method addresses these issues by integrating time-frequency features through Fourier basis expansion and mapping in the time-frequency space. Our approach extracts explicit frequency features while preserving temporal characteristics. FBM supports plug-and-play integration with various types of neural networks by only adjusting the first initial projection layer for better performance. First, we propose FBM-L, FBM-NL, and FBM-NP to enhance linear, MLP-based, and Transformer-based models, respectively, demonstrating the effectiveness of time-frequency features. Next, we propose a synergetic model architecture, termed FBM-S, which decomposes the seasonal, trend, and interaction effects into three separate blocks, each designed to model time-frequency features in a specialized manner. Finally, we introduce several techniques tailored for time-frequency features, including interaction masking, centralization, patching, rolling window projection, and multi-scale down-sampling. The results are validated on diverse real-world datasets for both long-term and short-term forecasting tasks with SOTA performance.
Related papers
- FB-Diff: Fourier Basis-guided Diffusion for Temporal Interpolation of 4D Medical Imaging [38.70420710947938]
The temporal task for 4D medical imaging plays a crucial role in clinical practice of respiratory motion modeling.<n>We propose a Fourier basis-guided Diffusion model, termed FB-Diff.<n>We show that FB-Diff achieves state-of-the-art metrics with better temporal consistency while maintaining promising reconstruction metrics.
arXiv Detail & Related papers (2025-07-06T21:39:48Z) - TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting [5.032613143415414]
We propose a deep learning model TimeCF for long-term time series forecasting based on the TimeMixer.<n>TimeCF decomposes the original time series into sequences of different scales.<n>Different scales are aggregated through a Feed-Forward Network.
arXiv Detail & Related papers (2025-05-23T06:39:20Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis [9.969451740838418]
We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis.
NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, and (ii) the capacity for data manipulation within the Fourier domain.
NFM achieves state-of-the-art performance on a wide range of tasks, including challenging time-series scenarios with previously unseen sampling rates at test time.
arXiv Detail & Related papers (2024-10-07T02:39:55Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
We propose a simple architecture for deep reinforcement learning by embedding inputs into a learned Fourier basis.
We show that it improves the sample efficiency of both state-based and image-based RL.
arXiv Detail & Related papers (2021-12-06T18:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.