FB-Diff: Fourier Basis-guided Diffusion for Temporal Interpolation of 4D Medical Imaging
- URL: http://arxiv.org/abs/2507.04547v1
- Date: Sun, 06 Jul 2025 21:39:48 GMT
- Title: FB-Diff: Fourier Basis-guided Diffusion for Temporal Interpolation of 4D Medical Imaging
- Authors: Xin You, Runze Yang, Chuyan Zhang, Zhongliang Jiang, Jie Yang, Nassir Navab,
- Abstract summary: The temporal task for 4D medical imaging plays a crucial role in clinical practice of respiratory motion modeling.<n>We propose a Fourier basis-guided Diffusion model, termed FB-Diff.<n>We show that FB-Diff achieves state-of-the-art metrics with better temporal consistency while maintaining promising reconstruction metrics.
- Score: 38.70420710947938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The temporal interpolation task for 4D medical imaging, plays a crucial role in clinical practice of respiratory motion modeling. Following the simplified linear-motion hypothesis, existing approaches adopt optical flow-based models to interpolate intermediate frames. However, realistic respiratory motions should be nonlinear and quasi-periodic with specific frequencies. Intuited by this property, we resolve the temporal interpolation task from the frequency perspective, and propose a Fourier basis-guided Diffusion model, termed FB-Diff. Specifically, due to the regular motion discipline of respiration, physiological motion priors are introduced to describe general characteristics of temporal data distributions. Then a Fourier motion operator is elaborately devised to extract Fourier bases by incorporating physiological motion priors and case-specific spectral information in the feature space of Variational Autoencoder. Well-learned Fourier bases can better simulate respiratory motions with motion patterns of specific frequencies. Conditioned on starting and ending frames, the diffusion model further leverages well-learned Fourier bases via the basis interaction operator, which promotes the temporal interpolation task in a generative manner. Extensive results demonstrate that FB-Diff achieves state-of-the-art (SOTA) perceptual performance with better temporal consistency while maintaining promising reconstruction metrics. Codes are available.
Related papers
- Fourier Basis Mapping: A Time-Frequency Learning Framework for Time Series Forecasting [25.304812011127257]
We introduce a novel method for integrating time-frequency features through Fourier basis expansion and mapping in the time-frequency space.<n>Our approach extracts explicit frequency features while preserving temporal characteristics.<n>The results are validated on diverse real-world datasets for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2025-07-13T01:45:27Z) - Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Brain Effective Connectivity Estimation via Fourier Spatiotemporal Attention [28.16273684461348]
We propose a brain effective connectivity estimation method based on temporal and spatial attention (FSTA-EC)<n>FSTA-EC combines Fourier attention and attention to simultaneously capture inter-series (temporal) dynamics and intra-series (temporal) dependencies from fMRI data.<n>The experimental results on simulated and real-resting-state fMRI datasets demonstrate that the proposed method exhibits superior performance when compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-03-14T10:41:27Z) - Robustifying Fourier Features Embeddings for Implicit Neural Representations [25.725097757343367]
Implicit Neural Representations (INRs) employ neural networks to represent continuous functions by mapping coordinates to the corresponding values of the target function.<n>INRs face a challenge known as spectral bias when dealing with scenes containing varying frequencies.<n>We propose the use of multi-layer perceptrons (MLPs) without additive.
arXiv Detail & Related papers (2025-02-08T07:43:37Z) - Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics [38.53044197103943]
GF-NODE integrates a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution.<n>We show that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations.<n>These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
arXiv Detail & Related papers (2024-11-03T15:10:48Z) - Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis [9.969451740838418]
We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis.
NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, and (ii) the capacity for data manipulation within the Fourier domain.
NFM achieves state-of-the-art performance on a wide range of tasks, including challenging time-series scenarios with previously unseen sampling rates at test time.
arXiv Detail & Related papers (2024-10-07T02:39:55Z) - Time Series Diffusion in the Frequency Domain [54.60573052311487]
We analyze whether representing time series in the frequency domain is a useful inductive bias for score-based diffusion models.
We show that a dual diffusion process occurs in the frequency domain with an important nuance.
We show how to adapt the denoising score matching approach to implement diffusion models in the frequency domain.
arXiv Detail & Related papers (2024-02-08T18:59:05Z) - FourierHandFlow: Neural 4D Hand Representation Using Fourier Query Flow [55.61843393812704]
Recent 4D shape representations do not capture implicit correspondences between articulated shapes or regularize jittery temporal deformations.
To effectively model-temporal deformations of articulated hands, we compose our 4D representation based on two types of query flow.
Our method achieves state-the-art results on video-based 4D reconstruction while being more efficient than the existing 3D/4D implicit shape representations.
arXiv Detail & Related papers (2023-07-16T16:58:37Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Dynamic Temporal Filtering in Video Models [128.02725199486719]
We present a new recipe of temporal feature learning, namely Dynamic Temporal Filter (DTF)
DTF learns a specialized frequency filter for every spatial location to model its long-range temporal dynamics.
It is feasible to plug DTF block into ConvNets and Transformer, yielding DTF-Net and DTF-Transformer.
arXiv Detail & Related papers (2022-11-15T15:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.