論文の概要: Enhancing ALS Progression Tracking with Semi-Supervised ALSFRS-R Scores Estimated from Ambient Home Health Monitoring
- arxiv url: http://arxiv.org/abs/2507.09460v1
- Date: Sun, 13 Jul 2025 02:56:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.266775
- Title: Enhancing ALS Progression Tracking with Semi-Supervised ALSFRS-R Scores Estimated from Ambient Home Health Monitoring
- Title(参考訳): 半監督型ALSFRS-Rスコアを用いた在宅健康モニタリングによるALS進行追跡の強化
- Authors: Noah Marchal, William E. Janes, Mihail Popescu, Xing Song,
- Abstract要約: 自己注意は、サブスケールレベルのモデルで最小の予測誤差を達成した。
機能領域にまたがる特異な均一性-均一性プロファイルを同定した。
- 参考スコア(独自算出の注目度): 3.210027230758067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical monitoring of functional decline in ALS relies on periodic assessments that may miss critical changes occurring between visits. To address this gap, semi-supervised regression models were developed to estimate rates of decline in a case series cohort by targeting ALSFRS- R scale trajectories with continuous in-home sensor monitoring data. Our analysis compared three model paradigms (individual batch learning and cohort-level batch versus incremental fine-tuned transfer learning) across linear slope, cubic polynomial, and ensembled self-attention pseudo-label interpolations. Results revealed cohort homogeneity across functional domains responding to learning methods, with transfer learning improving prediction error for ALSFRS-R subscales in 28 of 32 contrasts (mean RMSE=0.20(0.04)), and individual batch learning for predicting the composite scale (mean RMSE=3.15(1.25)) in 2 of 3. Self-attention interpolation achieved the lowest prediction error for subscale-level models (mean RMSE=0.19(0.06)), capturing complex nonlinear progression patterns, outperforming linear and cubic interpolations in 20 of 32 contrasts, though linear interpolation proved more stable in all ALSFRS-R composite scale models (mean RMSE=0.23(0.10)). We identified distinct homogeneity-heterogeneity profiles across functional domains with respiratory and speech exhibiting patient-specific patterns benefiting from personalized incremental adaptation, while swallowing and dressing functions followed cohort-level trajectories suitable for transfer models. These findings suggest that matching learning and pseudo-labeling techniques to functional domain-specific homogeneity-heterogeneity profiles enhances predictive accuracy in ALS progression tracking. Integrating adaptive model selection within sensor monitoring platforms could enable timely interventions and scalable deployment in future multi-center studies.
- Abstract(参考訳): ALSの機能低下の臨床的モニタリングは、訪問間の重大な変化を見逃す可能性のある定期的な評価に依存している。
このギャップに対処するために、半教師付き回帰モデルを開発し、連続した家庭内センサモニタリングデータを用いてALSFRS-Rスケール軌道を目標とし、ケースシリーズコホートにおける減少率を推定した。
本分析では,線形勾配,立方体多項式,アンサンブルされた擬似ラベル補間における3つのモデルパラダイム(個別のバッチ学習とコホートレベルのバッチとインクリメンタルな微調整変換学習)を比較した。
その結果, ALSFRS-Rサブスケール(平均RMSE=0.20(0.04))の28コントラスト(平均RMSE=0.20(0.04))の変換学習と, 複合スケール(平均RMSE=3.15(1.25))の2コントラスト(平均RMSE=3.15(1.25))の個別バッチ学習が, 学習手法に応答する機能ドメイン間のコホート均一性を示した。
線形補間は全てのALSFRS-R合成スケールモデル(平均RMSE=0.23(0.10))においてより安定であることが証明されたにもかかわらず、32のコントラストのうち20の点で線形および立方体補間よりも優れた複雑な非線形進行パターンを捉えた(平均RMSE=0.19(0.06))。
呼吸・発声機能を有する機能領域において, 個別の漸進的適応による患者固有のパターンを呈し, 摂食・ドレッシング機能ではコホートレベルの軌跡を呈する傾向がみられた。
これらの結果は,ALS進行追跡において,機能的領域固有の均一性-均一性プロファイルとのマッチング学習と擬似ラベル手法が予測精度を高めることを示唆している。
センサ監視プラットフォームに適応モデル選択を統合することで、将来のマルチセンター研究において、タイムリーな介入とスケーラブルなデプロイメントが可能になる。
関連論文リスト
- Diffusion with a Linguistic Compass: Steering the Generation of Clinically Plausible Future sMRI Representations for Early MCI Conversion Prediction [13.937881108738042]
そこで本研究では,臨床応用可能な将来のsMRI表現を直接ベースラインデータから合成する拡散型フレームワークを提案する。
ADNIとAIBLのコホートの実験では、MCI-Diffは最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2025-06-05T07:01:05Z) - Interpretable Deep Regression Models with Interval-Censored Failure Time Data [1.2993568435938014]
間隔制限付きデータの深層学習手法は、まだ探索が過小評価されており、特定のデータタイプやモデルに限られている。
本研究は、部分線形変換モデルの幅広いクラスを持つ区間知覚データに対する一般的な回帰フレームワークを提案する。
我々の手法をアルツハイマー病神経イメージングイニシアチブデータセットに適用すると、従来のアプローチと比較して新しい洞察と予測性能が向上する。
論文 参考訳(メタデータ) (2025-03-25T15:27:32Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
画像ベース剛性2D/3Dレジストレーションは, 蛍光ガイド下外科手術において重要な技術である。
デュアルブランチCNN変換器エンコーダを用いた完全微分型相関型ネットワークを提案する。
組込み情報に基づく低周波特徴と高周波特徴の分解に対して相関型損失を提案する。
論文 参考訳(メタデータ) (2024-02-04T14:12:51Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。