論文の概要: A Mixture of Linear Corrections Generates Secure Code
- arxiv url: http://arxiv.org/abs/2507.09508v1
- Date: Sun, 13 Jul 2025 06:27:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.370308
- Title: A Mixture of Linear Corrections Generates Secure Code
- Title(参考訳): セキュアコードを生成する線形補正の混合
- Authors: Weichen Yu, Ravi Mangal, Terry Zhuo, Matt Fredrikson, Corina S. Pasareanu,
- Abstract要約: 大規模言語モデル(LLM)は、洗練されたコード生成タスクに熟練しているが、コードの脆弱性を確実に検出または回避するには効果がない。
現在のLLMは、脆弱なコードとセキュアなコードとを区別する正確な内部表現を符号化している。
本研究では,モデルのトークン生成確率を補正によって微調整する推論時ステアリング手法を開発した。
- 参考スコア(独自算出の注目度): 20.94236753015922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have become proficient at sophisticated code-generation tasks, yet remain ineffective at reliably detecting or avoiding code vulnerabilities. Does this deficiency stem from insufficient learning about code vulnerabilities, or is it merely a result of ineffective prompting? Using representation engineering techniques, we investigate whether LLMs internally encode the concepts necessary to identify code vulnerabilities. We find that current LLMs encode precise internal representations that distinguish vulnerable from secure code--achieving greater accuracy than standard prompting approaches. Leveraging these vulnerability-sensitive representations, we develop an inference-time steering technique that subtly modulates the model's token-generation probabilities through a mixture of corrections (MoC). Our method effectively guides LLMs to produce less vulnerable code without compromising functionality, demonstrating a practical approach to controlled vulnerability management in generated code. Notably, MoC enhances the security ratio of Qwen2.5-Coder-7B by 8.9\%, while simultaneously improving functionality on HumanEval pass@1 by 2.1\%.
- Abstract(参考訳): 大規模言語モデル(LLM)は、洗練されたコード生成タスクに熟練しているが、コードの脆弱性を確実に検出または回避するには効果がない。
この欠陥は、コードの脆弱性に関する学習が不十分であることに由来するのか、それとも、単に非効果的なプロンプトの結果なのか?
表現工学技術を用いて,LLMがコード脆弱性を識別するために必要な概念を内部的にエンコードするかどうかを検討する。
現在のLLMは、脆弱性のあるコードとセキュアなコードとを区別する正確な内部表現を符号化しており、標準的なプロンプトアプローチよりも高い精度を実現している。
これらの脆弱性に敏感な表現を活用することで,モデルのトークン生成確率を補正(MoC)によって微調整する推論時ステアリング技術を開発した。
提案手法は,LLMに対して,性能を損なうことなく脆弱性の少ないコードを生成することを効果的に導出し,生成コードにおける脆弱性管理の実践的アプローチを示す。
特に、MoCはQwen2.5-Coder-7Bのセキュリティ比を8.9\%向上し、同時にHumanEvalpass@1の機能を2.1\%改善している。
関連論文リスト
- MalCodeAI: Autonomous Vulnerability Detection and Remediation via Language Agnostic Code Reasoning [0.0]
MalCodeAIは、自律的なコードセキュリティ分析と修復のための言語に依存しないパイプラインである。
コード分解と意味推論をQwen2.5-Coder-3B-Instructモデルで組み合わせる。
MalCodeAIは、レッドハットスタイルのエクスプロイトトレース、CVSSベースのリスクスコアリング、ゼロショットの一般化をサポートし、複雑なゼロデイ脆弱性を検出する。
論文 参考訳(メタデータ) (2025-07-15T01:25:04Z) - Guiding AI to Fix Its Own Flaws: An Empirical Study on LLM-Driven Secure Code Generation [16.29310628754089]
大規模言語モデル(LLM)は、コードの自動生成のための強力なツールになっている。
LLMは、しばしば重要なセキュリティプラクティスを見落とし、安全でないコードを生成する。
本稿では、安全性の低いコードを生成するための固有の傾向、自己生成する脆弱性ヒントによってガイドされた場合にセキュアなコードを生成する能力、フィードバックレベルが異なる場合に脆弱性を修復する効果について検討する。
論文 参考訳(メタデータ) (2025-06-28T23:24:33Z) - Large Language Model Unlearning for Source Code [65.42425213605114]
PRODは、LLMがコード生成能力を保ちながら、望ましくないコード内容を忘れることができる新しいアンラーニングアプローチである。
本評価は,既存の未学習アプローチと比較して,忘れ品質とモデルユーティリティのバランスが良好であることを示す。
論文 参考訳(メタデータ) (2025-06-20T16:27:59Z) - Towards Better Code Generation: Adaptive Decoding with Uncertainty Guidance [28.99265405319943]
我々はShannon Entropyを介して定量化されたトークンレベルの不確実性によって導かれる適応デコードフレームワークであるAdaDecを紹介する。
AdaDecは従来のビームサーチよりも15.5%の精度向上を実現している。
論文 参考訳(メタデータ) (2025-06-10T16:49:46Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.476222570886483]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。