論文の概要: MalCodeAI: Autonomous Vulnerability Detection and Remediation via Language Agnostic Code Reasoning
- arxiv url: http://arxiv.org/abs/2507.10898v1
- Date: Tue, 15 Jul 2025 01:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.945692
- Title: MalCodeAI: Autonomous Vulnerability Detection and Remediation via Language Agnostic Code Reasoning
- Title(参考訳): MalCodeAI: 言語に依存しないコード推論による自動脆弱性検出と修復
- Authors: Jugal Gajjar, Kamalasankari Subramaniakuppusamy, Noha El Kachach,
- Abstract要約: MalCodeAIは、自律的なコードセキュリティ分析と修復のための言語に依存しないパイプラインである。
コード分解と意味推論をQwen2.5-Coder-3B-Instructモデルで組み合わせる。
MalCodeAIは、レッドハットスタイルのエクスプロイトトレース、CVSSベースのリスクスコアリング、ゼロショットの一般化をサポートし、複雑なゼロデイ脆弱性を検出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing complexity of cyber threats and the limitations of traditional vulnerability detection tools necessitate novel approaches for securing software systems. We introduce MalCodeAI, a language-agnostic, multi-stage AI pipeline for autonomous code security analysis and remediation. MalCodeAI combines code decomposition and semantic reasoning using fine-tuned Qwen2.5-Coder-3B-Instruct models, optimized through Low-Rank Adaptation (LoRA) within the MLX framework, and delivers scalable, accurate results across 14 programming languages. In Phase 1, the model achieved a validation loss as low as 0.397 for functional decomposition and summarization of code segments after 200 iterations, 6 trainable layers, and a learning rate of 2 x 10^(-5). In Phase 2, for vulnerability detection and remediation, it achieved a best validation loss of 0.199 using the same number of iterations and trainable layers but with an increased learning rate of 4 x 10^(-5), effectively identifying security flaws and suggesting actionable fixes. MalCodeAI supports red-hat-style exploit tracing, CVSS-based risk scoring, and zero-shot generalization to detect complex, zero-day vulnerabilities. In a qualitative evaluation involving 15 developers, the system received high scores in usefulness (mean 8.06/10), interpretability (mean 7.40/10), and readability of outputs (mean 7.53/10), confirming its practical value in real-world development workflows. This work marks a significant advancement toward intelligent, explainable, and developer-centric software security solutions.
- Abstract(参考訳): サイバー脅威の増大と従来の脆弱性検出ツールの限界は、ソフトウェアシステムを保護するための新しいアプローチを必要としている。
自動コードセキュリティ分析と修復のための言語に依存しない多段階AIパイプラインであるMalCodeAIを紹介した。
MalCodeAIはQwen2.5-Coder-3B-Instructモデルを使ってコード分解とセマンティック推論を組み合わせ、MLXフレームワーク内のローランド適応(LoRA)を通じて最適化し、14のプログラミング言語でスケーラブルで正確な結果を提供する。
フェーズ1では、200イテレーション後のコードセグメントの関数分解と要約のための0.397、トレーニング可能なレイヤ6、学習速度2 x 10^(-5)の検証損失を達成した。
脆弱性検出と修復のためのフェーズ2では、同じイテレーション数とトレーニング可能なレイヤを使用して0.199の検証損失を達成したが、学習率が4 x 10^(-5)の増加し、セキュリティ上の欠陥を効果的に識別し、実行可能な修正を提案することができた。
MalCodeAIは、レッドハットスタイルのエクスプロイトトレース、CVSSベースのリスクスコアリング、ゼロショットの一般化をサポートし、複雑なゼロデイ脆弱性を検出する。
15人の開発者による質的な評価では、システムは有用性(平均8.06/10)、解釈可能性(平均7.40/10)、出力の可読性(平均7.53/10)の高いスコアを受け取り、実際の開発ワークフローにおける実用的価値を確認した。
この作業は、インテリジェントで説明可能な、開発者中心のソフトウェアセキュリティソリューションへの大きな進歩を示すものだ。
関連論文リスト
- Large Language Models Versus Static Code Analysis Tools: A Systematic Benchmark for Vulnerability Detection [0.0]
業界標準の3つの静的コード分析ツール(Sonar、CodeQL、Snyk Code)と、GitHub Modelsプラットフォーム(GPT-4.1、Mistral Large、DeepSeek V3)にホストされた最先端の3つの大規模言語モデルを評価した。
63の脆弱性を埋め込んだ10の現実世界のC#プロジェクトのキュレートされたスイートを使用して、古典的な精度(精度、リコール、Fスコア)、分析のレイテンシ、粒度、真の肯定性を検証するために必要な開発者の労力を測定します。
開発初期段階の言語モデルを採用して、広義のコンテキスト認識検出と検出を行う、ハイブリッドパイプラインを推奨します。
論文 参考訳(メタデータ) (2025-08-06T13:48:38Z) - LLMxCPG: Context-Aware Vulnerability Detection Through Code Property Graph-Guided Large Language Models [2.891351178680099]
本稿では,コードプロパティグラフ(CPG)とLarge Language Models(LLM)を統合し,堅牢な脆弱性検出を行う新しいフレームワークを提案する。
より簡潔で正確なコードスニペット表現を提供するアプローチの能力は、より大きなコードセグメントの分析を可能にします。
実証的な評価は、検証済みデータセット間でLLMxCPGの有効性を示し、最先端のベースラインよりもF1スコアが15~40%改善されている。
論文 参考訳(メタデータ) (2025-07-22T13:36:33Z) - A Mixture of Linear Corrections Generates Secure Code [20.94236753015922]
大規模言語モデル(LLM)は、洗練されたコード生成タスクに熟練しているが、コードの脆弱性を確実に検出または回避するには効果がない。
現在のLLMは、脆弱なコードとセキュアなコードとを区別する正確な内部表現を符号化している。
本研究では,モデルのトークン生成確率を補正によって微調整する推論時ステアリング手法を開発した。
論文 参考訳(メタデータ) (2025-07-13T06:27:33Z) - CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale [46.76144797837242]
大規模言語モデル(LLM)エージェントは、自律的なサイバーセキュリティタスクの処理において、ますます熟練している。
既存のベンチマークは不足していて、現実のシナリオをキャプチャできなかったり、スコープが限られていたりします。
我々はCyberGymを紹介した。CyberGymは1,507の現実世界の脆弱性を特徴とする大規模かつ高品質なサイバーセキュリティ評価フレームワークである。
論文 参考訳(メタデータ) (2025-06-03T07:35:14Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
半正直な設定で一貫したバックドア検出フレームワークを提案する。
本手法は,SoTAベースラインよりも5.4%,1.6%,11.9%の精度で検出性能が向上する。
特に、マルチモーダルな大規模言語モデルにおいて、バックドアを効果的に検出するのは、これが初めてである。
論文 参考訳(メタデータ) (2025-03-21T06:12:06Z) - Beyond Natural Language Perplexity: Detecting Dead Code Poisoning in Code Generation Datasets [8.977790462534152]
本稿では,コードの構造に合わせた新しいラインレベルの検出とクリーン化手法であるDePAを提案する。
DePAは既存の方法よりも優れており、検出F1スコアが0.14-0.19向上し、有毒セグメントの局在精度が44-65%向上した。
論文 参考訳(メタデータ) (2025-02-27T16:30:00Z) - StagedVulBERT: Multi-Granular Vulnerability Detection with a Novel Pre-trained Code Model [13.67394549308693]
本研究では,新たな脆弱性検出フレームワークStagedVulBERTを紹介する。
CodeBERT-HLSコンポーネントはトークンレベルとステートメントレベルの両方でセマンティクスを同時にキャプチャするために設計されている。
粗粒度の脆弱性検出では、StagedVulBERTは92.26%のF1スコアを獲得し、最高のパフォーマンスメソッドよりも6.58%改善している。
論文 参考訳(メタデータ) (2024-10-08T07:46:35Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - DeVAIC: A Tool for Security Assessment of AI-generated Code [5.383910843560784]
DeVAIC (Detection of Vulnerabilities in AI Generated Code)は、AI生成のPythonコードのセキュリティを評価するツールである。
論文 参考訳(メタデータ) (2024-04-11T08:27:23Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。