論文の概要: Efficient Private Inference Based on Helper-Assisted Malicious Security Dishonest Majority MPC
- arxiv url: http://arxiv.org/abs/2507.09607v2
- Date: Tue, 15 Jul 2025 11:31:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 13:21:48.456667
- Title: Efficient Private Inference Based on Helper-Assisted Malicious Security Dishonest Majority MPC
- Title(参考訳): ヘルパーを用いた悪意的セキュリティ不正直なMPCに基づく効率的な個人推論
- Authors: Kaiwen Wang, Yuehan Dong, Junchao Fan, Xiaolin Chang,
- Abstract要約: 本稿では,Helper-Assisted Malicious Security Dishonest Majority Model (HA-MSDM) を用いた個人推論フレームワークを提案する。
これらのプロトコルは、効率的な固定ラウンド乗算、プリミティブ分割、制約演算を実現する。
LeNetとAlexNetのベンチマーク結果によると、我々のフレームワークはLANで2.4-25.7倍、WANで1.3-9.5倍の高速化を実現している。
- 参考スコア(独自算出の注目度): 5.797285315996385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Private inference based on Secure Multi-Party Computation (MPC) addresses data privacy risks in Machine Learning as a Service (MLaaS). However, existing MPC-based private inference frameworks focuses on semi-honest or honest majority models, whose threat models are overly idealistic, while malicious security dishonest majority models face the challenge of low efficiency. To balance security and efficiency, we propose a private inference framework using Helper-Assisted Malicious Security Dishonest Majority Model (HA-MSDM). This framework includes our designed five MPC protocols and a co-optimized strategy. These protocols achieve efficient fixed-round multiplication, exponentiation, and polynomial operations, providing foundational primitives for private inference. The co-optimized strategy balances inference efficiency and accuracy. To enhance efficiency, we employ polynomial approximation for nonlinear layers. For improved accuracy, we construct sixth-order polynomial approximation within a fixed interval to achieve high-precision activation function fitting and introduce parameter-adjusted batch normalization layers to constrain the activation escape problem. Benchmark results on LeNet and AlexNet show our framework achieves 2.4-25.7x speedup in LAN and 1.3-9.5x acceleration in WAN compared to state-of-the-art frameworks (IEEE S&P'25), maintaining high accuracy with only 0.04%-1.08% relative errors.
- Abstract(参考訳): セキュアなマルチパーティ計算(MPC)に基づくプライベート推論は、マシンラーニング・アズ・ア・サービス(MLaaS)におけるデータのプライバシリスクに対処する。
しかし、既存のMPCベースのプライベート推論フレームワークは、脅威モデルが過度に理想主義的である半正直または正直な多数派モデルに焦点を当て、悪意のあるセキュリティ上の不正直な多数派モデルは、低効率の課題に直面している。
セキュリティと効率のバランスをとるために,Helper-Assisted Malicious Security Dishonest Majority Model (HA-MSDM) を用いたプライベート推論フレームワークを提案する。
このフレームワークには、設計した5つのMPCプロトコルと、協調最適化戦略が含まれています。
これらのプロトコルは、効率的な固定ラウンド乗法、指数演算、多項式演算を実現し、プライベート推論のための基本的なプリミティブを提供する。
共最適化戦略は推論効率と精度のバランスをとる。
効率を高めるために非線形層に対する多項式近似を用いる。
精度を向上するため、固定間隔内で6次多項式近似を構築し、高精度なアクティベーション関数のフィッティングを実現し、アクティベーションエスケープ問題を抑えるためにパラメータ調整バッチ正規化層を導入する。
LeNetとAlexNetのベンチマーク結果によると、我々のフレームワークはLANで2.4-25.7倍、WANで1.3-9.5倍の高速化を達成した。
関連論文リスト
- Privacy-Preserving Inference for Quantized BERT Models [13.36359444231145]
量子化は浮動小数点演算を低精度整数計算に変換することで有望な解を提供する。
本研究では, 層単位での微細な量子化手法を提案し, 1ビットの重み付き全連結層をセキュアな設定で支持する。
論文 参考訳(メタデータ) (2025-08-03T07:52:08Z) - EfficientLLM: Efficiency in Large Language Models [64.3537131208038]
大規模言語モデル(LLM)は大きな進歩を導いてきたが、その増加とコンテキストウィンドウは計算、エネルギー、金銭的コストを禁止している。
本稿では,新しいベンチマークであるEfficientLLMを紹介する。
論文 参考訳(メタデータ) (2025-05-20T02:27:08Z) - Revisiting Locally Differentially Private Protocols: Towards Better Trade-offs in Privacy, Utility, and Attack Resistance [4.5282933786221395]
ローカル微分プライバシー(LDP)は、特にデータを収集するサーバが信頼できない設定で、強力なプライバシ保護を提供する。
本稿では, LDPプロトコルを改良するための汎用多目的最適化フレームワークを提案する。
我々のフレームワークは、調整可能なプライバシ・ユーティリティ・トレードオフによるLPP機構のモジュール化とコンテキスト対応のデプロイを可能にする。
論文 参考訳(メタデータ) (2025-03-03T12:41:01Z) - The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
論文 参考訳(メタデータ) (2024-11-14T08:55:14Z) - Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
我々は,デコーディングのメモリバウンドネスに対処するために,プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。
PMPDはfp16モデルの行列ベクトル乗算において1.4$-$12.2$times$ Speedupを達成する。
我々の手法は、fp16モデルよりも3.8$-$8.0$times$、均一量子化アプローチよりも1.54$times$のスループット向上をもたらす。
論文 参考訳(メタデータ) (2024-10-17T11:46:33Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
本稿では,制約付きアライメントを等価な非制約アライメント問題に還元する双対化の観点を提案する。
我々は、閉形式を持つ滑らかで凸な双対函数を事前に最適化する。
我々の戦略は、モデルベースと嗜好ベースの設定における2つの実用的なアルゴリズムに導かれる。
論文 参考訳(メタデータ) (2024-05-29T22:12:52Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
攻撃者は、エッジサーバ(ES)のキュー情報とユーザの使用パターンを推測するために、オフロードの決定を盗み取ることができる。
パターンプライバシ(PP)を維持しつつ,レイテンシ,ESのエネルギー消費,タスク削減率を両立させるオフロード戦略を提案する。
そこで我々はDP-DQOアルゴリズムを開発し,PP問題にノイズを注入することでこの問題に対処する。
論文 参考訳(メタデータ) (2023-02-09T12:50:18Z) - PolyMPCNet: Towards ReLU-free Neural Architecture Search in Two-party
Computation Based Private Inference [23.795457990555878]
プライバシー保護型ディープラーニング(DL)計算を可能にするために,セキュアなマルチパーティ計算(MPC)が議論されている。
MPCは計算オーバーヘッドが非常に高く、大規模システムではその人気を阻害する可能性がある。
本研究では,MPC比較プロトコルとハードウェアアクセラレーションの協調オーバーヘッド削減のための,PolyMPCNetという体系的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-09-20T02:47:37Z) - Private, Efficient, and Accurate: Protecting Models Trained by
Multi-party Learning with Differential Privacy [8.8480262507008]
セキュアなDPSGDプロトコルと2つの最適化手法からなるPEA(Private, Efficient, Accurate)を提案する。
TF-Encrypted と Queqiao の2つのオープンソース MPL フレームワークで PEA を実装しています。
PEAはLAN設定下7分以内でCIFAR-10の精度88%の差分プライベート分類モデルを訓練できることを示した。
論文 参考訳(メタデータ) (2022-08-18T06:48:25Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
この論文は、2、3、4パーティで効率的なMPCフレームワークを設計することに焦点を当て、少なくとも1つの汚職とリング構造をサポートする。
それぞれのフレームワークに対して2つのバリエーションを提案し、一方は実行時間を最小化し、もう一方は金銭的コストに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-26T09:25:32Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Adam in Private: Secure and Fast Training of Deep Neural Networks with
Adaptive Moment Estimation [6.342794803074475]
本稿では,最先端の機械学習アルゴリズムを効率的に評価するフレームワークを提案する。
これは、MLアルゴリズムを「MPCフレンドリ」な変種に置き換える以前のほとんどの作業とは対照的である。
我々は、最先端のサードパーティシステムより優れたセキュアなトレーニングを得る。
論文 参考訳(メタデータ) (2021-06-04T01:40:09Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
フェデレーテッド・ラーニング(FL)はパラメータ伝達中にFLモデルに対する外部攻撃に対して脆弱である。
本稿では,最先端の防御アグリゲーション機構に対処する有効なMPアルゴリズムを提案する。
実験の結果,提案したCMPアルゴリズムは,既存の攻撃機構よりも効果的で,かなり優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T03:28:18Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
モバイルエッジデバイスの限られたストレージとコンピューティング能力を満たすために、ディープニューラルネットワーク(DNN)の軽量プルーニングが提案されている。
従来のプルーニング手法は主に、ユーザデータのプライバシを考慮せずに、モデルのサイズを減らしたり、パフォーマンスを向上させることに重点を置いていた。
プライベートトレーニングデータセットを必要としないプライバシ保護指向のプルーニングおよびモバイルアクセラレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-13T23:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。