論文の概要: SimStep: Chain-of-Abstractions for Incremental Specification and Debugging of AI-Generated Interactive Simulations
- arxiv url: http://arxiv.org/abs/2507.09664v1
- Date: Sun, 13 Jul 2025 14:54:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.675561
- Title: SimStep: Chain-of-Abstractions for Incremental Specification and Debugging of AI-Generated Interactive Simulations
- Title(参考訳): SimStep: AI生成インタラクティブシミュレーションのインクリメンタル仕様とデバッグのための抽象化の連鎖
- Authors: Zoe Kaputa, Anika Rajaram, Vryan Almanon Feliciano, Zhuoyue Lyu, Maneesh Agrawala, Hari Subramonyam,
- Abstract要約: CoA(Chain-of-Abstractions)は、プログラミングの中核的な能力を取り戻す方法である。
CoAは、合成プロセスを認知的に意味のある、タスクに沿った一連の表現に分解する。
SimStepは4つの中間抽象化を通じてシミュレーションを作成する教師のためのオーサリング環境である。
- 参考スコア(独自算出の注目度): 16.00479720281197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Programming-by-prompting with generative AI offers a new paradigm for end-user programming, shifting the focus from syntactic fluency to semantic intent. This shift holds particular promise for non-programmers such as educators, who can describe instructional goals in natural language to generate interactive learning content. Yet in bypassing direct code authoring, many of programming's core affordances - such as traceability, stepwise refinement, and behavioral testing - are lost. We propose the Chain-of-Abstractions (CoA) framework as a way to recover these affordances while preserving the expressive flexibility of natural language. CoA decomposes the synthesis process into a sequence of cognitively meaningful, task-aligned representations that function as checkpoints for specification, inspection, and refinement. We instantiate this approach in SimStep, an authoring environment for teachers that scaffolds simulation creation through four intermediate abstractions: Concept Graph, Scenario Graph, Learning Goal Graph, and UI Interaction Graph. To address ambiguities and misalignments, SimStep includes an inverse correction process that surfaces in-filled model assumptions and enables targeted revision without requiring users to manipulate code. Evaluations with educators show that CoA enables greater authoring control and interpretability in programming-by-prompting workflows.
- Abstract(参考訳): 生成AIによるプログラミング・バイ・プロンプトは、エンドユーザープログラミングの新しいパラダイムを提供する。
このシフトは、対話型学習コンテンツを生成するために自然言語で指導目標を記述できる教育者のような非プログラマに特に有望である。
しかし、直接コードオーサリングをバイパスすることで、トレーサビリティ、ステップワイドリファインメント、振る舞いテストなど、プログラミングのコアとなる多くの余裕が失われます。
自然言語の表現的柔軟性を保ちながら、これらの余裕を回復する手段として、抽象の連鎖(CoA)フレームワークを提案する。
CoAは、合成プロセスを認知的に意味のある一連のタスク整列表現に分解し、仕様、検査、洗練のためのチェックポイントとして機能する。
このアプローチを、Concept Graph、Scenario Graph、Learning Goal Graph、UI Interaction Graphの4つの中間抽象化を通じてシミュレーション作成を足場とする、教師のためのオーサリング環境であるSimStepでインスタンス化する。
曖昧さとミスアライメントに対処するために、SimStepは、インフィルドモデルの仮定をサーフェスし、ユーザーがコードを操作することなくターゲットのリビジョンを可能にする逆修正プロセスを含んでいる。
教育者による評価は、CoAがプログラミング・バイ・プロンプティング・ワークフローにおけるオーサリング制御と解釈可能性の向上を可能にしていることを示している。
関連論文リスト
- CodeDiffuser: Attention-Enhanced Diffusion Policy via VLM-Generated Code for Instruction Ambiguity [23.77040677368575]
我々は,潜在的にあいまいな自然言語によって指定されたタスクを達成できる,新しいロボット操作フレームワークを導入する。
このフレームワークはVLM(Vision-Language Model)を使用して、自然言語命令の抽象概念を解釈する。
本稿では,言語あいまいさ,コンタクトリッチな操作,多目的インタラクションといった課題に対して,アプローチが優れていることを示す。
論文 参考訳(メタデータ) (2025-06-19T23:42:03Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Large Language Models as Realistic Microservice Trace Generators [54.85489678342595]
ワークロードトレースは、複雑なコンピュータシステムの振る舞いを理解し、処理とメモリリソースを管理するために不可欠である。
本稿では,大規模言語モデルを用いて合成ワークロードトレースを生成する手法を提案する。
我々のモデルは、キートレースの特徴を予測したり、欠落したデータを埋め込んだりといった、下流のトレース関連タスクに適応する。
論文 参考訳(メタデータ) (2024-12-16T12:48:04Z) - Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly lexically) で合成され, 凍結パッチワイド特徴抽出器として, 事前学習された視覚言語モデル (VLM) を用いたフレームワークである。
本研究では,本手法の有効性を,行動クローンによる訓練を実世界のシーンに応用した,四重項フライ・トゥ・ターゲットタスクに適用した。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - SGC-VQGAN: Towards Complex Scene Representation via Semantic Guided Clustering Codebook [9.993066868670283]
本稿では,SGC-VQGANをセマンティックオンラインクラスタリング法で導入し,一貫性セマンティックラーニングによるトークンセマンティクスを強化する。
提案手法は時間空間的に一貫したセマンティック・コードブックを構築し,コードブックの崩壊問題と不均衡なトークン・セマンティクスに対処する。
論文 参考訳(メタデータ) (2024-09-09T23:12:43Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - SymbolicAI: A framework for logic-based approaches combining generative models and solvers [9.841285581456722]
生成過程における概念学習とフロー管理に論理的アプローチを取り入れた,汎用的でモジュール化されたフレームワークであるSybolicAIを紹介する。
我々は,大規模言語モデル(LLM)を,自然言語命令と形式言語命令の両方に基づいてタスクを実行する意味的解決器として扱う。
論文 参考訳(メタデータ) (2024-02-01T18:50:50Z) - AI Chain on Large Language Model for Unsupervised Control Flow Graph
Generation for Statically-Typed Partial Code [21.423928174875844]
制御フローグラフ(CFG)は、プログラムの振る舞いを可視化、理解、分析するために不可欠である。
本稿では,事前学習された大規模言語モデル(LLM)の誤り耐性と理解能力を活用してCFGを生成する手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T14:52:59Z) - Contrastive Language, Action, and State Pre-training for Robot Learning [1.1000499414131326]
本稿では,ロボット学習における下流作業を支援するために,言語,行動,状態情報を共有埋め込み空間に統一する手法を提案する。
提案手法であるCLASP(Contrastive Language, Action, and State Pre-training)は,CLIPの定式化を拡張し,分散学習を取り入れ,振る舞いテキストアライメントにおける固有の複雑さと一対多の関係を捉える。
本手法は,ゼロショットテキストビヘイビア検索,未知のロボット動作のキャプション,言語条件の強化学習に先立って動作を学習する,といった下流作業に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-21T07:19:33Z) - Shepherd Pre-trained Language Models to Develop a Train of Thought: An
Iterative Prompting Approach [30.117038793151004]
プレトレーニング言語モデル(PLM)は、複雑で多段階の推論手順を必要とするタスクを解決するために知識をリコールすることができない。
人間がこれらのタスクのために「思考の訓練」を開発するのと同じように、どのようにしてPLMにそのような能力を持たせることができるのか?
本稿では,現在のステップのコンテキスト上で条件付きプロンプトを動的に合成することで,これらの制約に対処する反復型コンテキスト認識プロンプトを提案する。
論文 参考訳(メタデータ) (2022-03-16T04:12:20Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
明示的な編集動作によって最小レベンシュテイン距離(MLD)を最適化する強化反復シーケンス編集(RISE)フレームワークを導入する。
RISEは会話の特徴に関連するトークンに注意を払うことができる。
2つのベンチマークデータセットの実験結果から、RISEは最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-30T08:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。