IM-LUT: Interpolation Mixing Look-Up Tables for Image Super-Resolution
- URL: http://arxiv.org/abs/2507.09923v3
- Date: Mon, 28 Jul 2025 06:48:28 GMT
- Title: IM-LUT: Interpolation Mixing Look-Up Tables for Image Super-Resolution
- Authors: Sejin Park, Sangmin Lee, Kyong Hwan Jin, Seung-Won Jung,
- Abstract summary: Look-up table (LUT)-based approaches have attracted interest due to their efficiency and performance.<n>Existing ASISR techniques often employ implicit neural representations, which come with considerable computational cost and memory demands.<n>We propose Interpolation Mixing LUT (IM-LUT), a novel framework that operates ASISR by learning to blend multiple functions to maximize their capacity.
- Score: 21.982964666527646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Super-resolution (SR) has been a pivotal task in image processing, aimed at enhancing image resolution across various applications. Recently, look-up table (LUT)-based approaches have attracted interest due to their efficiency and performance. However, these methods are typically designed for fixed scale factors, making them unsuitable for arbitrary-scale image SR (ASISR). Existing ASISR techniques often employ implicit neural representations, which come with considerable computational cost and memory demands. To address these limitations, we propose Interpolation Mixing LUT (IM-LUT), a novel framework that operates ASISR by learning to blend multiple interpolation functions to maximize their representational capacity. Specifically, we introduce IM-Net, a network trained to predict mixing weights for interpolation functions based on local image patterns and the target scale factor. To enhance efficiency of interpolation-based methods, IM-Net is transformed into IM-LUT, where LUTs are employed to replace computationally expensive operations, enabling lightweight and fast inference on CPUs while preserving reconstruction quality. Experimental results on several benchmark datasets demonstrate that IM-LUT consistently achieves a superior balance between image quality and efficiency compared to existing methods, highlighting its potential as a promising solution for resource-constrained applications.
Related papers
- Cascaded Multi-Scale Attention for Enhanced Multi-Scale Feature Extraction and Interaction with Low-Resolution Images [20.140898354987353]
We propose a new attention mechanism, named cascaded multi-scale attention (CMSA), to handle low-resolution inputs effectively.<n>This architecture allows for the effective handling of features across different scales, enhancing the model's ability to perform tasks such as human pose estimation.<n>Our experimental results show that the proposed method outperforms existing state-of-the-art methods in these areas with fewer parameters.
arXiv Detail & Related papers (2024-12-03T06:23:19Z) - ARNet: Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIR aims to minimize the distance between sketches and corresponding images in the embedding space.<n>We propose an effective approach to narrow the gap between the two domains.<n>It mainly facilitates unified mutual information sharing both intra- and inter-samples.
arXiv Detail & Related papers (2024-06-17T13:49:12Z) - Efficient Visual State Space Model for Image Deblurring [99.54894198086852]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.<n>We propose a simple yet effective visual state space model (EVSSM) for image deblurring.<n>The proposed EVSSM performs favorably against state-of-the-art methods on benchmark datasets and real-world images.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
arXiv Detail & Related papers (2023-02-27T14:19:31Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Coarse-to-Fine Embedded PatchMatch and Multi-Scale Dynamic Aggregation
for Reference-based Super-Resolution [48.093500219958834]
We propose an Accelerated Multi-Scale Aggregation network (AMSA) for Reference-based Super-Resolution.
The proposed AMSA achieves superior performance over state-of-the-art approaches on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2022-01-12T08:40:23Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.