論文の概要: Glance-MCMT: A General MCMT Framework with Glance Initialization and Progressive Association
- arxiv url: http://arxiv.org/abs/2507.10115v1
- Date: Mon, 14 Jul 2025 09:57:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:24.659575
- Title: Glance-MCMT: A General MCMT Framework with Glance Initialization and Progressive Association
- Title(参考訳): Glance-MCMT: Glance InitializationとProgressive Associationを備えた汎用MCMTフレームワーク
- Authors: Hamidreza Hashempoor,
- Abstract要約: ビュー間の一貫したグローバルなアイデンティティ割り当てを保証するマルチカメラマルチターゲット(MCMT)トラッキングフレームワークを提案する。
パイプラインは、BoT-SORTベースのシングルカメラ追跡から始まり、その後、グローバルIDを初期化するための一見のフェーズが続く。
新しいグローバルIDは、十分に類似した軌道や特徴一致が見つからない場合にのみ導入される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a multi-camera multi-target (MCMT) tracking framework that ensures consistent global identity assignment across views using trajectory and appearance cues. The pipeline starts with BoT-SORT-based single-camera tracking, followed by an initial glance phase to initialize global IDs via trajectory-feature matching. In later frames, new tracklets are matched to existing global identities through a prioritized global matching strategy. New global IDs are only introduced when no sufficiently similar trajectory or feature match is found. 3D positions are estimated using depth maps and calibration for spatial validation.
- Abstract(参考訳): 本稿では,マルチカメラ・マルチターゲット(MCMT)トラッキングフレームワークを提案する。
パイプラインは、BoT-SORTベースのシングルカメラ追跡から始まり、その後、軌跡と特徴のマッチングを通じてグローバルIDを初期化する初期段階が続く。
後続のフレームでは、新しいトラックレットは、優先順位付けされたグローバルマッチング戦略によって、既存のグローバルIDにマッチする。
新しいグローバルIDは、十分に類似した軌道や特徴一致が見つからない場合にのみ導入される。
空間的検証のための深度マップとキャリブレーションを用いて3次元位置を推定する。
関連論文リスト
- VISTA: Monocular Segmentation-Based Mapping for Appearance and View-Invariant Global Localization [0.2356141385409842]
VISTAは、オープンセットで単分子的なグローバルローカライゼーションフレームワークである。
環境マップ間の幾何学的整合性を利用して参照フレームを整列させる。
季節および斜角の航空データセット上でのVISTAの評価を行い,ベースライン法よりも最大69%改善した。
論文 参考訳(メタデータ) (2025-07-15T18:38:35Z) - Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - Incremental Multiview Point Cloud Registration [18.830104930321223]
本研究では,スキャンを標準座標系に段階的に整列させるインクリメンタルパイプラインを提案する。
検出器フリーのマーカにはトラックリファインメントプロセスが組み込まれている。
実験により,提案フレームワークは3つのベンチマークデータセットにおいて,既存のマルチビュー登録手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-07-06T09:28:23Z) - Multi-Correlation Siamese Transformer Network with Dense Connection for
3D Single Object Tracking [14.47355191520578]
ポイントクラウドベースの3Dオブジェクトトラッキングは、自動運転において重要なタスクである。
スパースLIDARポイントクラウドデータでテンプレートと検索ブランチの相関を効果的に学習することは依然として困難である。
本稿では,複数のステージを持つマルチ相関シームス変圧器ネットワークを提案し,各ステージの最後に特徴相関を行う。
論文 参考訳(メタデータ) (2023-12-18T09:33:49Z) - CP-SLAM: Collaborative Neural Point-based SLAM System [54.916578456416204]
本稿では,RGB-D画像シーケンスを用いた協調型暗黙的ニューラルローカライゼーションとマッピング(SLAM)システムを提案する。
これらすべてのモジュールを統一的なフレームワークで実現するために,ニューラルポイントに基づく新しい3次元シーン表現を提案する。
協調的な暗黙的SLAMに対して,一貫性と協調性を改善するために,分散分散型学習戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T09:17:15Z) - M$^3$Net: Multilevel, Mixed and Multistage Attention Network for Salient
Object Detection [22.60675416709486]
M$3$Netは、Salient Object Detectionのためのアテンションネットワークである。
マルチレベル特徴間の相互作用を実現するためのクロスアテンションアプローチ。
Mixed Attention Blockは、グローバルレベルとローカルレベルの両方でコンテキストをモデリングすることを目的としている。
集約された特徴をステージごとに最適化するためのマルチレベル監視戦略。
論文 参考訳(メタデータ) (2023-09-15T12:46:14Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - Improving tracking with a tracklet associator [17.839783649372116]
マルチプルオブジェクトトラッキング(Multiple Object Tracking、MOT)は、コンピュータビジョンにおけるタスクであり、ビデオ内のオブジェクトの位置を検出し、それらをユニークなアイデンティティに関連付けることを目的としている。
本稿では,制約プログラミング(CP)に基づく手法を提案する。その目的は,既存のトラッカーに移植することで,オブジェクトの関連性を改善することである。
論文 参考訳(メタデータ) (2022-04-22T12:47:46Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
Co-Salient Object Detection (CoSOD)の目標は、2つ以上の関連する画像を含むクエリグループに一般的に現れる有能なオブジェクトを見つけることである。
本稿では,グローバル対応モデリング(GCM)とローカル対応モデリング(LCM)を含む,グローバル・ローカル協調学習アーキテクチャを提案する。
提案したGLNetは3つの一般的なCoSODベンチマークデータセットに基づいて評価され、我々のモデルが小さなデータセット(約3k画像)でトレーニングされた場合、一部の大規模データセット(約8k-200k画像)でトレーニングされた11の最先端の競合製品(約8k-200k画像)を上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-19T14:32:41Z) - Adaptive Affinity for Associations in Multi-Target Multi-Camera Tracking [53.668757725179056]
本稿では,MTMCTにおけるアフィニティ推定を対応する対応範囲に適応させるための,単純かつ効果的な手法を提案する。
すべての外見の変化に対処する代わりに、データアソシエーション中に出現する可能性のあるものに特化したアフィニティメトリックを調整します。
ミスマッチを最小限に抑えるため、アダプティブアフィニティモジュールはグローバルなre-ID距離を大幅に改善する。
論文 参考訳(メタデータ) (2021-12-14T18:59:11Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
論文 参考訳(メタデータ) (2020-07-30T16:39:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。