FRSICL: LLM-Enabled In-Context Learning Flight Resource Allocation for Fresh Data Collection in UAV-Assisted Wildfire Monitoring
- URL: http://arxiv.org/abs/2507.10134v1
- Date: Mon, 14 Jul 2025 10:24:43 GMT
- Title: FRSICL: LLM-Enabled In-Context Learning Flight Resource Allocation for Fresh Data Collection in UAV-Assisted Wildfire Monitoring
- Authors: Yousef Emami, Hao Zhou, Miguel Gutierrez Gaitan, Kai Li, Luis Almeida,
- Abstract summary: Unmanned Aerial Vehicles (UAVs) are vital for public safety, particularly in wildfire monitoring, where early detection minimizes environmental impact.<n>In UAV-Assisted Wildfire Monitoring (UAWM) systems, joint optimization of sensor transmission scheduling and velocity is critical for minimizing Age of Information (AoI) from stale sensor data.<n>Deep Reinforcement Learning (DRL) has been used for such optimization; however, its limitations such as low sampling efficiency, simulation-to-reality gaps, and complex training render it unsuitable for time-critical applications like wildfire monitoring.<n>This paper introduces a new online Flight Resource Allocation scheme based on
- Score: 14.068881151569435
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) are vital for public safety, particularly in wildfire monitoring, where early detection minimizes environmental impact. In UAV-Assisted Wildfire Monitoring (UAWM) systems, joint optimization of sensor transmission scheduling and velocity is critical for minimizing Age of Information (AoI) from stale sensor data. Deep Reinforcement Learning (DRL) has been used for such optimization; however, its limitations such as low sampling efficiency, simulation-to-reality gaps, and complex training render it unsuitable for time-critical applications like wildfire monitoring. This paper introduces a new online Flight Resource Allocation scheme based on LLM-Enabled In-Context Learning (FRSICL) to jointly optimize the UAV's flight control and data collection schedule along the trajectory in real time, thereby asymptotically minimizing the average AoI across ground sensors. In contrast to DRL, FRSICL generates data collection schedules and controls velocity using natural language task descriptions and feedback from the environment, enabling dynamic decision-making without extensive retraining. Simulation results confirm the effectiveness of the proposed FRSICL compared to Proximal Policy Optimization (PPO) and Nearest-Neighbor baselines.
Related papers
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
This work focuses on maximizing the secrecy rate in heterogeneous UAV networks (HetUAVNs) under energy constraints.<n>We introduce a Large Language Model (LLM)-guided multi-agent learning approach.<n>Results show that our method outperforms existing baselines in secrecy and energy efficiency.
arXiv Detail & Related papers (2025-07-23T04:22:57Z) - Age of Information Minimization in UAV-Enabled Integrated Sensing and Communication Systems [34.92822911897626]
Unmanned aerial vehicles (UAVs) equipped with integrated sensing and communication (ISAC) capabilities are envisioned to play a pivotal role in future wireless networks.<n>We propose Age Information (AoI) system that simultaneously performs target sensing and multi-user communication.
arXiv Detail & Related papers (2025-07-18T18:17:09Z) - From Prompts to Protection: Large Language Model-Enabled In-Context Learning for Smart Public Safety UAV [30.003257621176708]
Large Language Models (LLMs) can adapt to new tasks through In-Context Learning (ICL), which enables task adaptation via natural language prompts and example-based guidance, without retraining.<n>This paper proposes the integration of LLM-enabled ICL with public safety UAV to address the key functions, such as path planning and velocity control, in the context of emergency response.
arXiv Detail & Related papers (2025-06-03T09:01:33Z) - LLM-Enabled In-Context Learning for Data Collection Scheduling in UAV-assisted Sensor Networks [1.3355457804095248]
Unmanned Aerial Vehicles (UAVs) are increasingly being used in various private and commercial applications.<n>Machine Learning (ML) methods used in UAV-assisted Sensor Networks (UASNETs) and especially in Deep Reinforcement Learning (DRL) face challenges such as complex and lengthy model training.<n>This paper proposes In-Context Learning (ICL)-based Data Collection Scheduling (ICLDC) scheme, as an alternative to DRL in emergencies.
arXiv Detail & Related papers (2025-04-20T10:05:07Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
This paper studies a new latency optimization problem in unmanned aerial vehicles (UAVs)-enabled federated learning (FL) with integrated sensing and communication.
We develop a simple yet efficient iterative algorithm to find a high-quality approximate solution, saving system latency up to 68.54% compared to benchmark schemes.
arXiv Detail & Related papers (2024-11-01T14:25:24Z) - Streamlining Forest Wildfire Surveillance: AI-Enhanced UAVs Utilizing the FLAME Aerial Video Dataset for Lightweight and Efficient Monitoring [4.303063757163241]
This study recognizes the imperative for real-time data processing in disaster response scenarios and introduces a lightweight and efficient approach for aerial video understanding.
Our methodology identifies redundant portions within the video through policy networks and eliminates this excess information using frame compression techniques.
Compared to the baseline, our approach reduces computation costs by more than 13 times while boosting accuracy by 3$%$.
arXiv Detail & Related papers (2024-08-31T17:26:53Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.